Большая энциклопедия нефти и газа. Влияние постседиментационных процессов на изменение пустотного пространства

– это горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке месторождений. Абсолютное большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются как терригенные (пески, алевриты, песчаники, алевролиты и некоторые глинистые породы), так и карбонатные (известняки, мел, доломиты) породы.

Свойства коллекторов.

Пористость – это процент содержания пустот в породе. Кристаллические породы могут иметь менее 1% пустот, тогда как некоторые песчаники около 35–40%, а кавернозные известняки могут обладать даже еще большей пористостью.

Различают общую, открытую и эффективную пористость коллекторов.

Общая пористость заключается в отношении объема всех пор к объему всей породы.

Открытая пористость заключается в отношении объема пор, которые сообщаются между собой, к объему породы.

Эффективная пористость заключается в отношении объема пор, по которым возможно течение флюида, к объему породы.

Наиболее обычный тип пустот – промежутки между зернами крупнозернистых осадочных пород, подобных песчаникам. Размер зерен не влияет на процент пористости, если этот размер одинаков, но при смешении зерен разного размера мелкие зерна частично заполняют пространство между крупными, уменьшая тем самым процент пористости.

Другой распространенный тип пустот – это каверны растворения в карбонатных породах – известняках и доломитах. Всякий раз, когда такие породы находятся в зоне проникновения или циркуляции подземных вод, они в какой-то степени растворяются, и результатом может быть образование высокопористых пород. Размер каверн выщелачивания изменяется от микроскопических пор до гигантских пещер. Еще одним типом природных пустот являются каверны выветривания, а также трещины и щели.

Различают следующие виды пустот:

Поры между зернами обломочных и некоторых карбонатных пород, обусловленные текстурными особенностями этих пород

Поры растворения (каверны выщелачивания), образуются в результате циркуляции подземных вод преимущественно в горных породах

Поры и трещины, возникающие под влиянием химических процессов (процесс доломитизации - превращение известняка в доломит, сопровождающийся уменьшением объема)

Пустоты и трещины, образовавшиеся в результате выветривания

Трещины тектонического происхождения

По происхождению поры делятся на:

1) Первичные-образовываются во время формирования породы.

Пустоты между частицами и зернами, слагающими породу

Пустоты между плоскостями наслоения

Пустоты, образованные после разложения органики

Пустоты изверженных пород

2) Вторичные-образовываются после формирования породы.

Поры, образованные в результате растворяющего действия воды

Трещины, связанные с действием тектонических сил

Трещины, образованные в результате перекристаллизации породы

По величине поры делятся на:

Обыкновенные(сверхкапиллярные)

Капиллярные

Субкапиллярные

Проницаемость – это свойство пород быть проводником при движении жидкостей или газов. Проницаемость измеряется в Дарси. Некоторые глины имеют такую же высокую пористость, как и песчаники, но они непроницаемы, так как размер их пор очень мал. Чем крупнее поры, тем выше проницаемость. Прямой связи между пористостью и проницаемостью нет, хотя обычно породы с невысокой пористостью (10–15%) имеют также и низкую проницаемость. Если проницаемость мала, то нефть будет только слабо сочиться из породы и продуктивность окажется ниже экономически эффективной. Поэтому трудно извлекать нефть из глин, хотя обильные признаки нефти в них имеются во многих районах мира. Методы извлечения нефти из глинистых пород разрабатываются.

Выделяют абсолютную, эффективную и относительную проницаемость.

Абсолютная(физическая)-это проницаемость химически-инертного газа по отношению к породе(на практике спользуют сухой инерный газ или воздух)

Эффективная(фазовая)-это проницаемость пористой среды при наличии в порах жидкости или газа(величина зависит не только от физических свойств породы, но и от процентного соотношения насыщающих породу жидкостей или газов); эффективная проницаемость всегда ниже абсолютной

Относительная, она равна отношению эффективной проницаемости к абсолютной

Из определения пород-коллекторов следует, что они должны обладать емкостью, т.е. системой пустот - пор, трещин и каверн. Однако далеко не все породы, обладающие емкостью, являются проницаемыми для нефти и газа, т.е. коллекторами. Поэтому при изучении коллекторских свойств горных пород определяют не только их пустотность, но и проницаемость. Проницаемость горных пород зависит от поперечных (к направлению движения флюидов) размеров пустот в породе. Кроме этого горная порода должна обладать высоким коэффициентом нефтегазонасыщенности.

Хотя обычно породами-коллекторами являются песчаники и карбонатные породы, любые породы, которые обладают необходимыми геологическими или структурными характеристиками, могут содержать нефть в промышленных количествах.

Основными показателями коллекторских свойств горных пород является пористость, проницаемость и нефтегазонасыщенность.

Изменение коллекторских свойств с глубиной.

С увеличением глубины залегания пород под влиянием геостатического давления увеличивается их плотность, а следовательно пористость уменьшается и ухудшаются емкостно-фильтрационные свойства.

Это относится преимущественно к гранулярным коллекторам (пески, песчаники, алевролиты).

Улучшение коллекторских свойств с глубиной наблюдается у карбонатных и других сильноуплотненных хрупких пород, подверженных растрескиванию под влиянием тектонических и других процессов.

В терригенных горных породах - коллекторах вторичная пористость на больших глубинах при высоких температурах возникает в результате выщелачивания и растворения карбонатного или карбонатно-глинистого цемента под воздействием агрессивных горячих вод, насыщенных углекислотой.

Классификация пород-коллекторов.

Все коллекторы по характеру пустот подразделяют на три типа:

Гранулярные или поровые (только обломочные горные породы)

Трещинные (любые горные породы)

Каверновые (только карбонатные породы)

Выделяют три больших группы коллекторов по степени проницаемости:

Равномернопроницаемые

Неравномернопроницаемые

Трещиноватые

Выделяют пять классов коллекторов по величине эффективной пористости:

Класс А, пористость >20%

Класс В, пористость 15-20%

Класс С, пористость 10-15%

Класс D, пористость 5-10%

Класс Е, пористость <5%

Каждый из этих классов разделяется еще на 3 группы по скорости движения жидкости.Практическое значение имеют первые четыре класса (промышленный интерес).

По характеру и природе порового пространства коллекторы делятся на 2 большие группы:

Коллекторы с межзерновыми (межгранулярными) порами - пески, песчаники, алевролиты

Свойства коллекторов нефти и газа. Типы коллекторов нефти и газа

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке, называются коллекторами . На формирование геометрии порового пространства коллекторов и, следовательно, на их филь­трационные характеристики влияют структура и текстура пород.

Структура осадочных горных пород - размеры и форма слагающих породу минеральных зерен или условных неделимых (биоморфных или детритовых остатков, скелетов организмов, оолитов и т. п.).

Текстура - характер взаимного расположения компонентов породы и их пространственная ориентация. Емкостное пространство включает емкости двух видов: седиментационные и постседиментационные, в кото­рых все изменения протекают с разной интенсивностью, опреде­ляемой в первую очередь типом коллектора.

1 Пустотность (пористость ) – наличие в горной породе пустотного пространства. Пустотное пространство определяется размерами, конфигурацией, укладкой частиц, слагающих породу и образующих поры, наличием в порах цементирующих веществ, а также трещин и каверн.

Под пористостью понимают пустотность породы-коллектора.. Для характеристики пористости употребляется коэффициент, который показывает, какую часть от общего объема породы составляют поры.

По размерам все поры делятся на сверхкапиллярные (> 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (<0,2 мкм).

В сверхкапиллярных порах движение воды подчинено законам гидравлики. Вода, нефть и газ в них свободно перемещаются под дей­ствием гравитационных сил. В капиллярных порах движение жидкости затруднено вследствие проявления сил молекулярного сцепления. Субкапиллярные поры характерны для глинистых пород, которые являются водо- и нефтегазоупорными. Фильтрация воды по таким породам невозможна.

Различают общую, открытую и эффективную пористость.

Общая (полная, абсолютная) пористость - это объем всех пор в породе. Соот­ветственно коэффициент общей пористости представляет собой отно­шение объема всех пор V п к объему образца породы V обр

m п = V п / V обр

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость – объем только тех пор, которые связаны, сообщаются между собой. Она характеризуется коэффициентом открытой пористости – отношением суммарного объема открытых пор V о.п. к объему образца породы V обр:

m о = V о.п. / V обр

Эффективная пористость – пористость, которая оп­ределяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры. Коэффициент эффективной пористости неф­тесодержащей породы равен отношению объема пор, через которые возможно движение нефти, воды или газа при определенных температуре и градиентах давления V э, к объему образца породы V обр:

m э = V э / V обр

Для характеристики двух- или трёхфазных систем применяется понятие динамической пористости . Коэффициент динамической пористости определяется отношением объема движущейся в породе жидкости V д к объему образца V обр:

m д = V д / V обр

Динамическая пористость всегда ниже эффективной, поскольку в эффективный объем пор включается также объем неподвижных жидкостей и газов, удерживаемых поверхностно-молекулярными силами.

2 Кавернозность - наличие в горной породе пустот непра­вильной или округлой формы размером более 1 мм. Она харак­теризуется коэффициентом кавернозности, равным отношению суммарного объема всех каверн V к к объему образца породы V обр

m к = V к / V обр

3 Гранулометрический состав горной породы харак­теризует количественное содержание в ней частиц различной ве­личины. Гра­нулометрический состав влияет на особенности эксплуата­ции нефтесодержащнх коллекторов, нефтеотдачу и различные био­химические процессы в продуктивных пластах.

По размеру частиц (мм) породы разделяются на три группы: пески или псаммиты 1-0,1; алевриты 0,1-0,01; пелиты менее 0.01. Породы относятся соответственно к псаммитам, алевритам или пелитам, если содержат по 50- 80 % частиц той или иной группы.

Для определения гранулометрического состава керн породы освобождают от нефти и воды. Для этого его помешают в экст­ратор и обрабатывают определенными растворителями. Гранулометрический состав таких пород, как пески, рыхлые песчаники и другие, легко распадающиеся на составляющие зерна, определяют ситовым анализом. В практике для гранулометриче­ского анализа применяют сита с отверстиями 1.0; 0,5; 0,25: 0,1 мм. реже - 0,04 мм. Еще более мелкие частицы разделяются гидрав­лическими методами.

4Трещиноватость - наличие в породе трещин. Тре­щины – это разрывы в горной породе (без перемещения блоков породы), характеризующиеся раскрытостью от десятков микрон до миллиметров, преимущественно тектонического происхожде­ния. Раскрытость трещин позволяет приближенно оценить величины трещинной пустотности и трещинной проницаемости.

5 Проницаемость - способность породы пропускать через себя жидкости и газы (при наличии перепада давления). Она ко­личественно характеризует фильтрационные свойства коллектора.

Для оценки абсолютной проницаемости горных пород обычно используют линейный закон фильтрации Дарси:

Согласно этому закону проницаемость k пр – константа пропор­циональности, характеризующая пористую среду, причем в иде­альном случае она не зависит от типа фильтруемой жидкости.

При движении через образец неоднородной жидкости, пред­ставленной несколькими фазами (газ-вода, нефть-вода, газ- нефть, газ-нефть-вода), величины проницаемости, определяе­мые по фильтрации каждой из фаз, будут отличаться от абсолют­ной проницаемости и одна от другой. Различают эффективную (фазовую) проницаемость для данного газа или жидкости при одновременном присутствии в порах другой фазы - жидкой или газообразной. Она изменяется в зависимости от характера фазы, температуры и давления н выражается в относительных еди­ницах.

Отношение величины эффективной проницаемости к абсолют­ной называется относительной проницаемостью породы.

6 Коэффициентом водо-, нефте-, газонасыщенности (k в, k н, k г) называется отношение объема воды, нефти или газа (V в, V н, V г),содержащихся в пустотном пространстве породы, к объему пустот (V п): k в = V в / V п; ka= V н / V п; k r = V г / V п.

Сумма коэффициентов насыщенности породы нефтью, водой и газом равна единице. Обычно коэффициенты нефте- и газонасыщенности определяют по коэффициенту водонасьаценности А в, исходя из соотношения k н(г) =1– k в.

7 Удельная поверхность г.п . – суммарная поверхность частиц или поровых каналов содержащихся в ед. объема образца.

T – суммарная поверхность частиц, либо поровых каналов в образце [м 2 ]

V – объем образца

8 Механические свойства г.п.:

1) Упругость г.п.

2) Прочность на и разрыв

3) Пластичность г.п.

Упругие свойства г.п. На состояние пласта, режим его работы, существенное влияние могут оказывать упругость коллектора и содержащиеся в нем флюиды. Если пластовое давление падает, то Н и В в пласте расширяются, а поровые каналы сужаются, в следствие того, что внешнее давление на пласт остается постоянным, а внутреннее уменьшается.

Упругую энергию г.п. принято характеризовать коэффициентами сжимаемости.

Коэффициент сжимаемости пласта, коэффициент сжимаемости пор, коэффициент сжимаемости поровой среды.

Пластические свойства г.п. – при упругих деформациях зерна породы и цементирующей материал. При увеличении давления свыше предела упругости (прочности), цементирующий материал разрушается, зерна породы смещаются относительно друг друга, плотность упаковки увеличивается до исчезновения пустот в г.п. (для пород гранулярного типа).

Под прочностью г.п. понимают их сопротивление механическому разрушению. Прочность пород на сжатие во много раз превышает прочность на разрыв.

9 Тепловые свойства г.п.

1) Удельная теплоемкость

2) Коэффициент теплопроводности

3) Коэффициент температуропроводности

4) Коэффициент линейного и объемного расширения

Коллекторы классифицируются по целому ряду признаков, поэтому имеется множество различных их классификаций. Наиболее важными классификационными критериями являются:

Тип емкости;

Литологический состав.

Величина пористости;

Величина проницаемости.

Классифакация коллекторов по типу емкости:

1 Поровый

2 Трещинновый

3 Каверновый

4 Трещинно-поровый

5 Трещинно-порово-каверновый

6 Каверно-поровый

Классификация коллекторов по литологическому составу :

Наиболее распространенные коллекторы нефти и газа - терригенные и карбонатные породы.

Терригенные породы-коллекторы представлены в основном пе­счаниками и алевролитами. Основные их показатели - грануло­метрический состав, форма и характер поверхности минеральных зерен.

Карбонатные породы-коллекторы представлены известняками и доломитами. Формирование их емкостей определяется как гене­зисом, так и особенностями постседиментацнонных преобразова­ний, в первую очередь трещиноватостью и последующим выщела­чиванием пород. Развитие трещиноватости в карбонатных поро­дах обусловлено литологическими особенностями пород.

Классификация коллекторов по величине пористости:

Классификация коллекторов по величине проницаемости:


Коллекторами нефти и газа являются такие породы, которые способны вмещать нефть и газ и отдавать их при перепаде давления .

Любая порода, которая содержит сообщающиеся между собой поры, пустоты, трещины, может стать коллектором.

Принято все коллекторы нефти и газа разделять на терригенные и карбонатные.

Терригенные коллекторы. Породы - коллекторы терригенного типа состоят из зерен минералов и обломков пород разных размеров, сцементированных цементами различного типа. Обычно эти породы представлены в разной мере сцементированными песчаниками, алевролитам, а также в виде смеси их с глинами и аргиллитами. Для характеристики терригенных коллекторов большое значение имеет их минералогический и гранулометрический составы.

По минералогическому составу терригенные коллекторы делятся на кварцевые и полимиктовые.

Кварцевый коллектор образуется в природе при условиях, когда в процессе осадконакопления превалирующее значение имеют зерна кварца. В этом случае образованная порода имеет песчаную основу (до 95-98 %).

Полимиктовый коллектор образуется, если при осадконакоплении помимо зерен кварца большой процент зерен представлен полевыми шпатами и продуктами их химических преобразований. Образованная порода имеет значительную примесь глинистых разностей (до 25-50 %), ухудшающих ее коллекторские свойства.

Карбонатные коллекторы слагаются в основном известняками и доломитами. Среди карбонатных коллекторов особое место занимают биогенные или органогенные толщи, образованные жизнедеятельностью организмов: кораллов, мшанок, моллюсков, диатомовых водорослей.

По величине обломков различают породы:

Свойства горной породы вмещать (емкость) и пропускать (проницаемость) через себя жидкости и газы называются фильтрационно-емкостными свойствами (ФЕС).

Пустотное пространство пород представлено порами, кавернами, трещинами, биопустотами.

Порами обычно называют пустоты между минеральными зернами и обломками размером менее 1 мм. Они заключены в жестком каркасе породы, называемом матрицей.

Каверны - это разнообразные пустоты размером более 1 мм, образованные в основном при выщелачивании отдельных компонентов или их перекристаллизации.

Трещины - совокупность разрывов, рассекающих горную породу, в основной массе образованная в литогенезе и связанная с формированием осадочной горной породы.

Биопустоты - к ним относятся внутренние пустоты в раковинах, внутри коралловых скелетов, в известняках ракушечниках.

Емкость определяется пористостью - объемом пустот в породе. Пористость по генетической классификации может быть:

Первичной - пустоты образуются в процессе осадконакопления и породообразования (промежутки между зернами - межзерновые поры, между плоскостями наслоения, камеры в раковинах и т.д.).

И вторичной - поры образуются в результате последующих процессов: разлома и дробления породы, растворения, перекристаллизации, возникновения трещин вследствие сокращения породы (например, при доломитизации) и других процессов. Пористость измеряется в процентах.

Основная часть нефтяных и газовых месторождений приурочены к осадочным породам - обломочным, органогенным и хемогенным.

Обломочные породы - коллекторы образуются за счет разрушения прежде существовавших горных пород - мXагматических и магматические.

Обломочные делятся на:

1. терригенные

рыхлые: сцементированные:

песок > 0,1 мм песчаник

алеврит 0,1 - 0,01 алевролит

глина < 0,01 аргиллит

Частицы разрушенных г.п. могут быть сцементированы глинистым и карбонатным цементом. Если цемент глинистый, то при бурении водоотдача должна быть минимальной, если водоотдача повышеннная, то глины будут набухать и проницаемость пласта будет падать и обусловит длительное освоение скважин и низкие дебиты.

Для повышения дебитов принимают глинокислотные обработки, растворяющие цемент и увеличвающие проницаемость.

Если цемент карбонатный, то применяют солянокислотные обработки. Большинство коллекторов месторождений Западной Сибири являются терригенными.

Обломочные карбонатные породы - это обломки известняка, доломита, карбонатных зерен...

Коллектора из карбонатных породов представлены в Вольго-Уральской и Тиманопечерских провинциях.

Органогенные породы - коллекторы - это известняки биогенные из останков животных и растительных организмов т.е. рифовые образования.

Это месторождения уралоповолжья, украины, белоруссии, ближнего и среднего востока, индонезии, брунея, венесуэлы, мексики, пермской области.

Хемогенные породы-коллекторы - известняки и доломиты, образующиеся из-за химических реакций при сносе в море солей, кальция и магния.

В пордах коллекторах выделяют Поры:

Первичные поры (образованы в ходе осадконакопления):

Структурные (между частицами зерен пород)

Поры между плоскостями пород

Биогенные пороы при разложении органики

Межгранулярные и межкристаллические

вторичные:

как результат выщелачивания, перекристаллизации, доломитизации и эрозионных процессов.

Первичные поры обычно заполнены остаточной или связанной водой, сохранившейся в породе. Вторичные поры содержат нефть и газ.ы

Неколлекторные породы – это породы, которые не отдают нефть и газы. Коллекторы – накапливающие и отдающие нефть, газ и воду.ы

Итоги исследования щлама и керна увязывают с данными ГИС, результатами испытаний и гидродинамических исследованиях. Наиболее пористые трещиноватые породы насыщенные УВ в процессе отбора разрушаются. В ЗС коллекторы определяются в основном по ГИС. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления и уменьшением диаметра скважин на кавернометрии.

37. Методика выделения коллекторов в терригенном в разрезе. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления горных пород (нефть и газ ток не проводят) и уменьшением диаметра скважин на кавернометрии.

Кавернометрией определяется диаметр скважин

При бурении глинистый раствор отфильтровывается в пласт и на поверхности интервала образуется глинистая корка и диаметр уменьшается.

38 . В карбонатных коллекторах три методы выделения из-за сложного строения: нефтегаз в порах, кавернах и трещинах.

Каротаж – испытание – каротаж.

Замер удельного электрического сопротивление до и после испытания позволяют выделять нужные интервалы.

После получения притоков сопротивление больше.

Метод двух растворов: сперва замеряют электрическое сопротивление, когда скважина заполнена буровым раствором, затем его меняют на воду и снова определяют сопротивление.

Вода обладает электропроводностью и проникает в пласть и сопротивление будет уменьшаться.

Совместное использование НГК и АГК. Методом НГК определяют общую пустотность пород: поры, каверны и трещины. АГК – только трещины. Так выделяется коллектор.

39. Породы коллекторы обнаруживаются также по увеличению скорости бурения, проходки на долото, провалы инструмента, поглощению бурового раствора, нефтегазоводопроводимости тк коллекторы пористые и проницаемости.

41. ФЕС характеризуется пористостью, кавернозностью и трещиноватостью.

Поры - это пустоты с диаметром < 2 мм

Виды пористости - полная, характеризуется сообщающимися и несообщающимися порами К п = V пор\V образца породы * 100 = %

Несообщающиеся поры не отдают нефть и газ.

открытая (только сообщающиеся поры). Юзается при подсчете запасов и составлении проектов разработки. К оп = (вес сухого образца керна - вес насыщенного керосином под вакуумом в воздухе образца) /(вес насыщенного керосином под вакуумом в воздухе образца - вес насыщенного керосином образца в керосине)

По размерам поры:

сверхкапиллярные = 2 - 05 мм

капиллярные = 05 - 0,0002

субкапиллярные < 0,0002

Сверх и просто капиллярные могут быть нефтегазоносны, а суб иметь остаточную воду.

Максимум открытой пористости - это около 30-40 процентов.

В ЗС наиболее часто встречается Кпо = 15-17%

К по = 10 - 17% - это трудноизвлекаемые запасы.

Для добычи нефти и газа бурят горизонтальные скважины, боковые стволы, проводят гидроразрыв пласта.

Если коэфициент открытой пористости < 10%, то залежи нерентабельны и исключаются из подсчета запасов.

В карбонатных коллекторах нефть и газ в трещинах и нижние пределы пористости 2-3%, и только с меньшей - нерентабельны.

Кавернозность. Пустоты с диаметром больше 2 мм. Каверны образуются в процессе отложения известняков в рифах и при разложении ОВ и циркуляции пластовых вод. При подсчете запасов учитывают по коэффициент кавернозности.

Каверны образуются в процесе отложения известняков в рифах и при разложении ОВ и при циркуляции пластовых вод.

К кавернозности = объем каверн \ объем пор * 100 = %

При наличии каверн и трещин дебиты на два-три порядка выше, ибо проницаемость в 100-1000 раз больше.

Трещиноватость.

Макротрещины > 40-50 мм

Микротрещины < стольки же

При бурении породы разрушаются, поэтому можно изучать только микротрещины. Т.к. основные запасы в трещинах, то трещиноватость изучают по промысловым данным с помощью фотокаратожа и телекамер.

При наличии трещин большие дебиты.

Проницаемость.

П - способность породы пропускать через себя нефть, газ или воду.

По формуле Дарси к пр = (расход флюида через образец * вязкость флюида * длина образца)\(площадь поперечного сечения образца*разница давлений на входе и выходе)

Максимальная проницаемость достигает 2-5 Дарси.

Проницаемость в ЗС обычно 0,05 - 0,5 мкм2

Если проницаемость меньше 0,05 то запасы трудноизвлекаемы. Для добычи трудноизвлекаемых проводят гидроразрыв.

42. Неоднородность, её виды и количественная оценка

Коллектора месторождений в Западной Сибири имеют высокую степень неоднородности.

Неоднородность - широкое изменение вещественного состава и коллекторских свойств по площади и по разрезу.

Есть два вида неоднородности:

Макронеоднородность

Изменение толщин продуктивных пластов и разделяющих непроницаемых прослоев. Изучают по структурным картам общих и нефтяных толщин.

h общ - толщина пласта от кровли до подошвы

h общ - h эфф = h коллектора

h н г = толщина прослоек

Для характеристик параметров строят карты общих эффективных толщин. Изучают по детальным геопрофилям.

Микронеоднородность - изменение коллекторских свойств по площади, по разрезу.

Микронеоднородность характеризуется коэффициентом песчанистости. К песч = h эфф\h общ= 0 - 1

Если 1-0,7 - то высокопрододуктивная


Главной составной частью природного резервуара является коллектор. Коллектор – это горная порода способная вмещать в себя флюид и отдавать, при существующих методах эксплуатации месторождений.

Любая порода, которая содержит сообщающиеся между собой поры, пустоты, трещины, может стать коллектором.

Выделяют следующие группы пород коллекторов по генезису:

Обломочные или терригенные,

Биогенные или органогенные и хемогенные,

Смешанные,

Нетрадиционные коллекторы.

Терригенные или обломочные коллекторы (межзерновые, гранулярные )- это породы, образовавшиеся в результате переноса и механического накопления продуктов дезинтеграции более древних пород. Поскольку обломочный материал чаще всего транспортируется с суши в результате процессов выветривания, их еще называют терригенными. Терригенные отложения состоят преимущественно из кварца, полевых шпатов, слюд, глинистых минералов и обломков пород.

По величине обломков различают породы:

Таблица 4.1

Основная масса обломочной породы состоит из частиц, значительно более мелких, чем средние по размеру зерна. Эти мелкие частицы заполняют пустоты между более крупными зернами. Какую-то часть пустот за­полняет цемент, состоящий из глинистого или карбонатного вещества. Обломки обычносвязаны цементом. Цемент может быть сингенетическим – первичным и эпигенетическим – вторичным. Обломки обычносвязаны цементом.

Хемогенные породы-коллекторы - это осадочные образования, состоящие из минерального вещества, выпавшего на месте его формирования и не подвергшегося переносу. К ним относятся известняки, мергели, доломиты, мел, кремнистые сланцы. Пустотное пространство хемогенных коллекторов образовано трещинами и кавернами выщелачивания.

Среди карбонатных коллекторов особое место занимают биогенные или органогенные толщи, образованные жизнедеятельностью организмов: кораллов, мшанок, моллюсков, диатомовых водорослей.

Нетрадиционные коллекторы , образовавшиеся при выходе газов из вулканической лавы (туфы). Газовое месторождение в туфах и лавах риолитов палеогена в Японии.

Коллекторы метаморфических и магматических пород образовавшиеся в результате выветривания, выщелачивания, тектонической дезинтеграции - вторичных изменений пород. Месторождение Белый Тигр во Вьетнаме - коллектор образовался в результате выщелачивания и дезинтеграции гранитогнейсов.

Характеристика коллекторов дается по их основным свойствам: пористости, проницаемости, структуре порового пространства. По технологическим характеристикам коллекторы должны обладать определенной емкостью и проницаемостью.

Свойства горной породы вмещать (емкость) и пропускать (проницаемость) через себя жидкости и газы называются фильтрационно-емкостными свойствами (ФЕС ).

Емкость определяется пористостью – объемом пустот в породе. Пористость по генетической классификации может быть:

Первичной- пустоты образуются в процессе осадконакопления и породообразования (промежутки между зернами – межзерновые поры, между плоскостями наслоения, камеры в раковинах и т.д.).

И вторичной- поры образуются в результате последующих процессов: разлома и дробления породы, растворения, перекристаллизации, возникновения трещин вследствие сокращения породы (например, при доломитизации) и других процессов. Пористость измеряется в про­центах.

Суммарный объем пустот в породе называется общей (теоретической, полной, абсолютной) пористостью.

Для характеристики общей пористости используется коэффициент общей пористости - отношение суммарного объёма взаимосвязанных и изолированных пор к общему объёму горной породы

К п = V пор / V обр

где, К п - коэффициент пористости,

V пор - суммарный объем пор,

Величина общей пористости еще недостаточное свидетельство коллекторских свойств породы. Поры и пустоты могут быть взаимосообщающимися и тупиковыми (изолированными).

Открытая пористость – это объем связанных, сообщающихся между собой пор. Коэффициент открытой пористости всегда меньше коэффициента общей пористости.

К о = V о / V обр

где, К о - коэффициент открытой пористости,

V пор - объем открытых, взаимосообщающиихся пор,

V обр – объем образца породы.

Эффективная пористость – это объем пор, из которых углеводороды могут быть извлечены при разработке, еще меньшая величина.

К э = V э / V обр

где, К э - коэффициент эффективной пористости,

V пор - объем пор, через которые возможно движение флюида

V обр – объем образца породы.

Объем пор зависит от формы и размеров частиц обломочной породы, их уплотненности, отсортированности, количества, качества и типа цемента.

Тип цемента (по М.С. Швецову)

Таблица 4.2.

Тип цемента Взаимоотношение обломочных зерен и цемента
Базальный Зерна не соприкасаются друг с другом, они как бы вкраплены в цемент. Цементация прочная
Поровый Зерна соприкасаются друг с другом, все пространство между ними заполнено цементом. Прочность цементации различная
Порово-базальный Часть зерен касается друг друга, часть не касается. Прочность цементации различная
Контактовый Зерна соприкасаются друг с другом, и в местах их соприкосновения развит цемент. Цементация непрочная
Коррозионный (разъедания) Цемент заполняет все пространство между зернами и частично внедряется в них вследствие растворения зерен. Очень прочная цементация.
Сгустковый (пятнистый) Цемент развит неравномерно, пятнами. Прочность цементации различная

Важнейшим показателем, характеризующим породу как коллектор, является размер пор: их ширина или просвет.

Пористость обусловлена наличием:

Пор – пространство между отдельными зернами, слагающими горную породу. В хорошо окатанных, близких к шарообразной форме зернах, пористость не зависит от размера зерен, а определяется их укладкой и однородностью по размеру. Неглубоко залегающие, недоуплотненные коллекторы сеноманского возраста Уренгойского месторождения имеют пористость до 40%.

При низкой отсортированности мелкие зерна заполняют свободное пространство между крупными, чем уменьшают пористость.

Рис. 4.5. Примеры идеальной упаковки зерен:

кубическая (К п = 45%); ромбическая (К п = 25%)

Каверн – сравнительно крупных пустотных пространств, образовавшихся в результате действия процессов выщелачивания.

Трещин – разрывов сплошности горных пород, обусловленных литогенетическими причинами или тектонической деятельностью. Например: с возрастанием горного давления, уплотнением пород пористость уменьшается, но не безгранично. При давлении 350 - 400 кг/см 3 песчаники начинают дробиться, появляются трещины, что приводит к возникновению вторичной пористости.

Литологическая трещиноватость (уплотнение, перекристаллизация, обезвоживание, выветривание) приспосабливается к структурно-текстурным особенностям пород. Трещины ветвятся, огибают отдельные зерна, в целом их расположение хаотично, поверхность стенок неровная.

Тектоническая трещиноватость (колебательные, складкообразовательные, дизьюнктивные движения) не считается со структурно-текстурными свойствами пород.