Автоматизированные системы коммерческого учета энергоресурсов в сфере жкх. Создание систем учета энергоресурсов

АИИС УЭ ГУП НАО «Нарьян-Марская электростанция»

Согласно определения, данного в законе «Об энергосбережении и о повышении энергетической эффективности», энергосбережение - реализация организационных, правовых, технических, технологических, экономических и иных мер, направленных на уменьшение объема используемых энергетических ресурсов, при сохранении соответствующего полезного эффекта от их использования. Иными словами, энергосбережение - это процесс снижения потерь электрической и тепловой энергии.

Значительную часть потерь электрической энергии составляют технические потери. Это технологический расход электроэнергии при ее передаче от генерирующего оборудования потребителю. Технические потери являются неизбежными, однако их сокращение достигается за счет оптимизации режимов работы оборудования, реализации мероприятий по компенсации реактивной мощности, своевременного обслуживания и замены выработавшего свой ресурс оборудования.

Еще одна составляющая потерь - так называемый недоучет. Любые приборы учета имеют собственную погрешность - как случайную, так и систематическую. Случайная погрешность может работать как в «плюс», так и в «минус». Систематическая погрешность фактически является недоучетом энергоресурсов. Использование счетчиков, трансформаторов тока и напряжения низкого класса точности, неправильный выбор коэффициентов трансформации трансформаторов тока, превышение номинальной нагрузки трансформаторов напряжения определяют систематическую составляющую погрешности.

По статистическим данным, в Единой энергосистеме России, суммарная систематическая погрешность приборов учета по классам напряжения составляет чуть более одного процента от общего отпуска в сеть. То есть один процент всей выработанной электроэнергии используется бесплатно. По результатам года этот процент составляет значительную для энергосистемы сумму.

Кроме этого, в структуре потерь есть так называемые коммерческие потери. Это прежде всего хищение электроэнергии потребителями. Данное явление наиболее характерно для бытового и мелкомоторного сектора. В России коммерческие потери составляют до 30% всей потребленной электроэнергии. Контролировать величину технических потерь, бороться с коммерческими потерями и снижать недоучет можно только развивая систему коммерческого и технического учета электроэнергии. Модернизация систем учета должна проходить с использованием самых современных измерительных и информационных технологий.


Автоматизированные информационно-измерительные системы учета электроэнергии широко применяются в России уже более 10 лет и зарекомендовали себя, как надежный инструмент оценки всех мероприятий по повышению энергоэффективности, обеспечивая при этом возврат инвестиций в создание системы от 1 до 10 месяцев (в отдельных случаях).

Основной вид деятельности ГУП НАО «Нарьян-Марская электростанция» – производство электрической энергии. «Нарьян-Марская электростанция» – самый мощный генерирующий объект, расположенный на территории муниципальных образований округа. В связи с этим эффективность внедрения системы учета электроэнергии, тепловой энергии и топлива на указанной электростанции будет максимальной.

На электростанции должен быть организован учет всех используемых видов топлива, учет вырабатываемой электрической и тепловой энергии. Все системы учета должны быть интегрированы в единую АИИС УЭ, позволяющую осуществлять мониторинг потребления топлива и выработки электрической и тепловой энергии в реальном масштабе времени.

При создании систем учета должен быть использован комплексный подход. Недопустимо устанавливать дорогостоящее измерительное оборудование в электроустановках подлежащих замене или капитальному ремонту. При проведении мероприятий по автоматизации сбора и обработки данных непременно должна проводиться работа по обеспечению требуемой точности измерений.

Архитектура системы
Практика применения информационных систем учета энергоресурсов доказала эффективность использования трехуровневой структуры.

Первый уровень составляет распределенная система сбора данных. Специализированные контроллеры собирают данные с приборов учета энергоресурсов, осуществляют преобразование и сохраняют консолидированную информацию в транзакционную базу данных.

Второй уровень - система хранения данных состоит из базы данных учета энергоресурсов и системы управления базами данных (СУБД). Третий уровень – система предоставления информации пользователям системы. Уровень может быть выполнен по технологии клиент–сервер с использованием технологии «толстого клиента». В этом случае вся бизнес-логика выполняется на стороне клиента – т.е. автоматизированного рабочего места пользователя. Система предоставления информации пользователям может быть построена также и в форме web-службы,
когда пользователи подключаются к серверу при помощи «тонких клиентов» (например, интернет-браузера).


Вся обработка информации в этом случае осуществляется на стороне сервера, что существенно разгружает ПК пользователя, позволяет централизованно обслуживать АИИС, однако требует большей квалификации обслуживающего персонала.

Автоматизированная информационно-измерительная система учета энергоресурсов
ГУП НАО «Нарьян-Марская электростанция».

Внедрение системы коммерческого учета позволяет снизить затраты на энергоресурсы за счёт:
точности расчетов с энергоснабжающими организациями и субабонентами;

повышения оперативности обнаружения и устранения отклонений от установленных режимов генерации и потребления;

планирования режимов и оптимизации графиков генерации и потребления.

снизить объём собственного энергопотребления за счёт:
повышения оперативности управления энергопотреблением;
централизованного контроля потребления энергоресурсов;
контроля собственного потребления энергоресурсов структурными подразделениями электростанции;


персонализированного контроля соблюдения технологической дисциплины и оптимизации режимов работы оборудования;

повышения оперативности выявления непроизводственных потерь энергоресурсов в форме утечек и аварийных режимов работы оборудования;

внедрение АИИС УЭ позволит разработать систему нормирования потребления и выработки электрической и тепловой энергии.

В целом, АИИС учета энергоресурсов должна стать инструментом объективного контроля реализации проводимых мероприятий и программ энергосбережения.

АИИС УЭ не должна оставаться изолированной и должна обеспечивать доступ других информационных систем к консолидированной учетной информации.

Интеграция системы учета энергоресурсов с системой диспетчерского управления позволит реализовать систему выдачи рекомендаций диспетчеру для выбора наиболее эффективного режима.

Интеграция системы учета энергоресурсов с системой управления предприятием позволит напрямую формировать отчетность о ключевых показателях производительности (KPI), производственную и бухгалтерскую отчетность исходя из объективной информации, сформированной автоматизированным комплексом.

На уровне системы управления предприятием рекомендуется создание систем многомерного анализа данных с использованием OLAP-технологий.

Использование систем анализа данных позволит определять самый экономически эффективный режим работы. А использование функций интеллектуального анализа данных (Data mining) позволит предсказывать поведение системы и на основе этой информации формировать рекомендации начальнику смены электростанции для обеспечения максимальной эффективности использования топливных ресурсов и оптимальной загрузки оборудования.

Именно автоматизированная информационно измерительная система учета энергоресурсов станет инструментом для оценки всех мероприятий по энергосбережению и обеспечению энергоэффективности объектов электроэнергетики. В связи с этим, мероприятия по ее созданию необходимо начинать проводить так скоро, как только это возможно (согласно требованиям федерального закона №261-ФЗ). Планы создания АИИС учета энергоресурсов необходимо увязывать с планами реконструкции распределительных устройств станции.


Кроме этого необходимо принимать во внимание планы создания других информационных систем электростанции для снижения издержек на создание сетевой и серверной инфраструктуры.

2.2 Автоматизированные системы учета и мониторинга выработки электроэнергии и потребления топлива дизель-генераторных электростанций

Эффективная система учета и мониторинга выработки электроэнергии и потребления топлива дизель-генераторных электростанций позволит:
Снизить потери от нецелевого использования дизельного топлива.
Оперативно отслеживать характеристики дизель-генераторных установок.
Повысить точность прогнозирования потребления энергетических ресурсов сельскими поселениями НАО.
Автоматически сводить топливный и энергетический баланс НАО.
Своевременно диагностировать работу ДГУ и планировать их ремонты.
Оптимизировать объем завозимого топлива в период летней навигации.
На основании данных полученных системой может быть принято обоснованное решение о замене или модернизации дизель-генератора.

В ходе реализации программы по внедрению системы учета и мониторинга должны быть решены вопросы:
Выбор типов измерительных приборов.
Организация сбора данных со счетчиков и расходомеров дизельного топлива на уровне ДЭС.
Организация системы передачи данных с уровня ДЭС в центр сбора и обработки данных.

Автоматизированная система учета и мониторинга выработки электроэнергии и расхода дизельного топлива должна представлять собой трехуровневую систему.

Первый уровень составляют счетчики электрической энергии и расходомеры дизельного топлива. Приборы учета и мониторинга в автоматическом режиме осуществляют измерение расхода электроэнергии и топлива, формируют архив значений и предоставляют цифровой интерфейс к результатам измерений. При необходимости эксплуатационный персонал может получить информацию с ЖКИ индикаторов приборов.


Структурная схема системы мониторинга и учета электрической энергии и дизельного топлива.

Второй уровень представляет собой устройство сбора и передачи данных (УСПД) конструктивно выполненное в виде PC-совместимого промышленного контроллера. УСПД собирает результаты измерений с расходомеров и счетчиков электрической энергии по цифровым интерфейсам, осуществляет обработку результатов измерений в соответствии с параметрированием промышленного контроллера, а так же предоставляет цифровой интерфейс к собранной информации.

Верхний (третий) уровень состоит из информационно-вычислительного комплекса (ИВК), который обеспечивает автоматизированный сбор и хранение результатов измерений, осуществляет диагностику состояния средств и объектов учета и мониторинга, а так же обеспечивает доступ к учетной информации эксплуатационного персонала.

ИВК, состоящий из коммуникационного сервера обеспечивает сбор данных с распределенной системы учета и мониторинга и передачу их на серверы базы данных. Для предоставления доступа к данным через сеть интернет в ИВК должен быть включен один или несколько web-серверов.

Программное обеспечение ИВК может включать:

Программное обеспечение систем управления базами данных (СУБД), которое должно обеспечивать формирование баз данных, управление файлами и их поиск. ПО должно иметь средства поддержки приложений, обеспечивающие ввод и поддержание целостности данных, а также формирование отчетов и должно преимущественно строиться с использованием технологии клиент-сервер либо сервис ориентированных технологий.

Программное обеспечение, реализующее задачи и функции АИИС (прикладное ПО), в соответствии с требованиями технического задания.

Программное обеспечение, отвечающее за полноту и достоверность информации в АИИС учета и мониторинга (ПО достоверизации), определяющее сроки обновления и хранения данных.

Программное обеспечение, отвечающее за поддержание системы единого времени в составе АИИС.

Одним из основных требований к программному обеспечению ИВК является открытость и возможность интеграции с другими информационными системами Ненецкого автономного округа.

Автоматизированная система учета и мониторинга электрической энергии и расхода дизельного топлива должна включать две подсистемы:
подсистему учета и мониторинга производства электрической энергии;
подсистему учета и мониторинга расхода дизельного топлива.


Расходомеры
Основным элементом подсистемы учета и мониторинга расхода дизельного топлива является расходомер. Он должен функционировать как в составе автоматизированной системы, так и автономно.

При выборе типа измерительного прибора необходимо учитывать, что многие расходомеры, представленные на рынке, в силу своих конструктивных особенностей, понижают давление в топливном тракте и в случае низкого качества топлива, либо экстремальных климатических условий, могут быть причиной аварии ДГУ. В связи с этим, предпочтительна установка современных ультразвуковых и электромагнитных расходомеров, которые не создают дополнительных потерь давления топлива.

Следует отметить, что существуют механические расходомеры создают минимальные потери давления, благодаря конструктивным особенностям, однако срок службы таких устройств составляет не более 10-15лет.

Также, необходимо внимательно подойти к определению места установки дизельного расходомера. Для предотвращения нецелевого использования топлива расходомер, как правило, должен быть установлен на каждом агрегате между расходным баком дизель-генератора и топливным фильтром. При этом, место установки каждого расходомера должно быть определено индивидуально, в соответствии с требованиями к монтажу, которые разработаны производителем прибора учета расхода дизельного топлива.

В топливной магистрали, ведущей из резервуарного парка к дизель-генератору, прибор учета следует размещать лишь при отсутствии возможности установки его после расходного бака, либо при отсутствии самого расходного бака.

Выбор типа расходомера связан с типом устройства сбора данных. Предпочтителен вариант, когда расходомер формирует профиль расход топлива, хранит его в своей энергонезависимой памяти и предоставляет цифровой интерфейс к этим данным. В этом случае исключены ошибки учета, вызванные человеческим фактором, и появляется возможность составления энергетического баланса ДЭС на суточном интервале, что существенно повышает наблюдаемость объекта.

Вне зависимости от типа, расходомер должен обеспечивать точность измерения не хуже 1%, среднюю наработку на отказ не менее 35000часов, при общем сроке службы не менее 20лет в условиях эксплуатации. Динамический диапазон - отношение максимального измеряемого расхода к минимальному значению измеряемого расхода - не должен быть менее чем 1:25. Диапазон допустимых температур должен быть не хуже от минус 300С до плюс 500С.


Счетчики электрической энергии

Счетчик электрической энергии является базовым элементов подсистемы учета и мониторинга электроэнергии.

При выборе типа электрического счетчика следует отдавать предпочтение отечественным многофункциональным цифровым приборам, имеющим положительный опыт эксплуатации в России. Примеры таких электросчетчиков приведены в приложении П1.

Одна из основных характеристик счетчика - класс точности – должен быть не хуже 0,5S. Для обеспечения непрерывности учета и мониторинга, прибор учета должен иметь возможность подключения резервного источника питания и автоматического переключения на источник резервного питания при исчезновении основного питания и наоборот. Также необходимым условием является наличие энергонезависимой памяти для хранения:
профиля нагрузки с получасовым интервалом на глубину не менее 35 суток;
данных по активной и реактивной электроэнергии с нарастающим итогом за прошедший месяц;
запрограммированных параметров.

Коммуникационные возможности счетчика электрической энергии должны обеспечивать подключение по одному или нескольким цифровым интерфейсам компонентов АИИС, в том числе для автономного считывания, удалѐнного доступа и параметрирования.

Системное время счетчика должно вестись с точностью не хуже 5с/сутки с возможностью внешней автоматической коррекции (синхронизации).

Все устройства, входящие в автоматизированную систему должны быть диагностируемы и следовательно наличие в устройствах «Журнала событий», фиксирующего время и даты наступления событий является обязательным.

Счетчик должен обеспечивать защиту от несанкционированного изменения параметров, а также от записи, при этом защита должна быть обеспечена на программном (логическом) уровне (установка паролей) и аппаратном (физическом) уровне.

В условиях НАО особенно важно, чтобы счетчики обеспечивали работоспособность в диапазоне температур от минус 40˚С до плюс 60˚С.

Средняя наработка на отказ счетчика должна составлять не менее 35000 часов при сроке службы не менее 20 лет.

Счетчик электрической энергии должен быть внесен в государственный реестр средств измерений РФ. Межповерочный интервал счетчика должен быть не менее 8 лет.


УСПД

На уровне ДЭС УСПД выполняет объединяющую функцию для всех подсистем. УСПД должно быть выполнено в виде промышленного контроллера.

Контроллер работает в автоматическом режиме и обеспечивает сбор результатов измерений от счѐтчиков по цифровым интерфейсам, обработку результатов измерений в соответствии с параметрированием промышленного контроллера, предоставляет интерфейс доступа к собранной информации, синхронизирует системное время приборов учета электроэнергии и дизельного топлива.

Программное обеспечение УСПД должно поддерживать необходимые протоколы, а само УСПД совместимо по интерфейсу, как с выбранными расходомерами, так и со счетчиками электроэнергии. Использование отдельного устройства сбора и передачи данных для каждой подсистемы существенно повышает стоимость самой системы и существенно усложняет обслуживание автоматизированной системы.

В связи с малой доступностью большинства сельских поселений НАО диагностируемость оборудования АИИС чрезвычайно важна. В промышленном контроллере должно быть обеспечено автоматическое ведение «Журнала событий», в котором фиксируются время и даты наступления событий, а также попытки несанкционированного доступа связи с промышленным контроллером, приведшие к каким-либо изменениям данных, перезапуски промышленного контроллера (при пропадании напряжения, зацикливании и т.п.), изменение текущих значений времени и даты при синхронизации времени, отключение питания. Все события, фиксируемые в журнале приборов учета и промышленного контроллера, должны передаваться в центр сбора данных.

Самодиагностика устройства сбора и передачи данных должна записываться в журнал событий или выводиться на экран УСПД. Глубина хранения данных на промышленном контроллере не должна быть меньше 35 суток.

Промышленный контроллер должен иметь встроенные энергонезависимые часы, обеспечивающие ведение даты и времени. Рекомендуемая точность хода часов должна быть не хуже 5.0 с/сутки.
Необходимо использовать УСПД, либо выполненный в едином корпусе, обеспечивающем возможность одностороннего обслуживания и степень защиты не ниже IP51 (в соответствии с ГОСТ 14254) или установленный в специализированных шкафах, имеющих степень защиты не менее IP51.


Конструкция промышленного контроллера должна позволять его размещение как на стандартных панелях, так и в специализированных шкафах (при использовании внешних модемов). Промышленный контроллер должен функционировать автоматически (без вмешательства эксплуатационного персонала) и иметь подтвержденную наработку на отказ не менее 35000 часов. Срок службы промышленного контроллера должен составлять не менее 20 лет.

Напряжение питания промышленного контроллера от сети постоянного тока должно составлять 24В с допустимым отклонением напряжения в пределах +/- 20%. Промышленный контроллер должен иметь резервный источник питания и обеспечивать автоматическое переключение на резервный источник питания при исчезновении основного питания и обратно. Промышленный контроллер должен обеспечивать работоспособность в диапазоне температур, в соответствии с условиями эксплуатации.

В целях оптимизации стоимости измерительного оборудования может быть выбран вариант, когда с расходомера унифицированный сигнал 4-20мА заводится непосредственно в контроллер УСПД. В этом случае необходимо учитывать, что измерительный канал заканчивается на УСПД и контроллер должен быть сертифицирован как средство измерения и внесен в государственный реестр средств измерений.

Вопросы питания измерительных приборов и коммуникационного оборудования

В ходе разработки и реализации проектов по внедрению автоматизированной системы учета и мониторинга особое внимание должно быть уделено вопросам электропитания основных элементов системы. Организация резервированного питания позволит обеспечить непрерывное
функционирование всех элементов, обеспечит непрерывный учет дизельного топлива и электроэнергии, постоянный мониторинг ДЭС из центра сбора данных.

Счетчики электроэнергии должны иметь дополнительный ввод внешнего питания для передачи информации по цифровому интерфейсу в случае отсутствия измерительного напряжения. Производители расходомеров снабжают приборы учета внутренним источником питания, позволяющим устройству выполнять учетные функции и оставаться на связи до 30 дней, при отсутствии внешнего питания.

Нарушения качества электрической энергии могут приводить к выходу из строя элементов автоматизированной системы, в связи с этим, должны быть приняты меры по повышению качества электрической энергии питания приборов учета и средств автоматизации.

Система заземления ДЭС должна отвечать требованиям ПУЭ. Создание отдельного контура заземления для системы автоматизации и связи должно быть обосновано в проектной документации.


Организация каналов связи для системы сбора данных

Для удаленных и малодоступных районов НАО предпочтительно организовывать спутниковый канал связи между ИВКЭ и ИВК. Стоимость комплекта двунаправленной спутниковой связи находится в пределах от 80 до 150 тысяч рублей за одну точку. Абонентская плата за использование спутникового канала связи пропускной способностью 512кбит/сек составляет от 500 до 3000 рублей в зависимости от объема передаваемой информации. Организованный канал может использоваться не только для передачи данных АИИС, но и для организации канала голосовой связи. При этом обеспечивается возможность развития систем автоматизации, создания подсистемы учета и мониторинга тепловой энергии, подключения метеорологического оборудования. Недостатком спутниковых систем передачи данных является зависимость качества связи от погодных условий.

В районах присутствия операторов мобильной связи экономически целесообразным является создание систем передачи данных на базе GSM/GPRS/3G каналов.

Нежелательно организовывать сбор учетный данных через передачу по телефону, радиосвязи или передачу показаний приборов учета с нарочным. Такой способ увеличивает риск злоупотреблений и не исключает ошибки при снятии показаний и передаче их оператору центра сбора и обработки данных системы учета и мониторинга электрической энергии и дизельного топлива.

Внедрение системы учета необходимо производить в несколько этапов с выделением пусковых комплексов. Для оценки эффективности системы учета необходимо реализовать 2-3 «пилотных» проекта в относительно легкодоступных населенных пунктах.

В первую очередь автоматизированными системами учета и мониторинга электрической энергии и дизельного топлива следует оснастить наиболее крупные дизельные электрические станции в населенных пунктах с наибольшей численностью населения.

Во вторую очередь следует оснащать ДЭС с наибольшим расходом топлива на выработку одного кВт*ч. электроэнергии, для обнаружения коммерческих потерь дизельного топлива и борьбы с ними. Далее такими системами должны быть оборудованы все остальные электростанции Ненецкого автономного округа.

2.3 АИИС учета электроэнергии объектов ЖКХ г.Нарьян-Мар

Разработка подпрограммы по установке автоматизированной информационно-измерительной системы учета электроэнергии объектов ЖКХ г.Нарьян-Мар должна выполняться по поручению Правительства Ненецкого автономного округа. В ходе реализации необходимо создание общедомовых узлов учета электрической энергии, а также оборудование узлов учета современными приборами.

Реализация подпрограммы позволит:

1. Повысить надежность снабжения электрической энергией социально значимых объектов городской инфраструктуры, а так же населения г.Нарьян-Мар.

2. Снизить потери электроэнергии в городской электрической сети.

3. Провести определение и выравнивание общего баланса использования электрической энергии и мощности, что позволит более обоснованно подойти к формированию тарифа на передачу и использование электроэнергии.

4. Повысить заинтересованность управляющих компаний в более эффективной эксплуатации и ремонте внутридомовых электрических сетей.

5. Повысить оперативность управления электроснабжением объектов ЖКХ.

6. Вести адресную борьбу с коммерческими потерями электроэнергии.

7. Разработать наиболее эффективные дифференцированные тарифы для населения и промышленных предприятий.

В качестве приборов учета необходимо использовать цифровые многофункциональные счетчики отечественного производства. Рекомендуемые типы приборов учета представлены в приложении П1.
Счетчики рекомендуется размещать в отдельных шкафах учета. При этом
система обогрева шкафа должна обеспечивать функционирование узла учета при
любой температуре наружного воздуха. Все шкафы учета должны оборудоваться
системой удаленного сбора данных, позволяющей получать информацию с
электросчетчиков через сеть GSM/GPRS/3G.

Очередность установки узлов учета электрической энергии должна быть определена и согласована в ходе реализации проекта, исходя из следующих критериев:
1. Жилые дома с наибольшими объемами потребления.
2. Жилые дома с низкой обеспеченностью индивидуальными приборами учета.
3. Остальные жилые дома.

В ходе реализации проекта современными пунктами учета должны быть оборудованы все многоквартирные жилые дома г.Нарьян-Мар.

В бытовом секторе существенную роль в структуре потерь электроэнергии играют коммерческие потери. Наиболее эффективное мероприятие по снижению коммерческих потерь электроэнергии - обновление парка приборов учета у бытовых потребителей. Должна быть поставлена цель полностью обновить парк приборов в ближайшие 2-3года. АИИС учета электроэнергии, в первую очередь, должна внедряется в тех местах, где наиболее вероятна возможность несанкционированного потребления. Современные технологии передачи данных позволяют осуществлять беспроводной сбор данных о потреблении электроэнергии со счетчиков. Причем стоимость таких решений неуклонно снижается.

Ограничиваться только техническими мероприятиями не следует. Помимо капитальных вложений в организацию узлов учета, не менее эффективны и мероприятия организационного характера, такие как:
проведение проверок и рейдов по выявлению нарушений потребления электроэнергии;
пересмотр договоров с физическими и юридическими лицами.

При борьбе с коммерческими потерями в системах электроснабжения потребителей всегда следует сопоставлять стоимость капитальных вложений и ожидаемую отдачу от принимаемых мер.

учета энергоресурсов в зданиях и сооружениях

на основе технологий беспроводных сенсорных сетей и интеллектуальных датчиков

Интеллектуальная энергосберегающая система учета энергоресурсов в зданиях и сооружениях на основе технологий беспроводных сенсорных сетей и интеллектуальных датчиков (далее – ИЭС) предназначена для автоматизированного учета энергоресурсов, регулирования потребления энергоресурсов и диспетчеризации энергоресурсов (учета тепла, учета тепловой энергии, учета воды, учета электроэнергии), а также передачи тревожных извещений в интересах снижения расходов конечных пользователей, теплоснабжающих и эксплуатирующих организаций, ЖКХ, обеспечения комфортных условиях проживания и предотвращения аварийных и чрезвычайных ситуаций.

Интеллектуальная энергосберегающая система учета энергоресурсов выполняет функции:

  • индивидуального (поквартирного) многотарифного учета горячей и холодной воды и учета электрической энергии;
  • индивидуального (поквартирного) получения и накопления исходных данных (температуры радиаторов отопления и температуры в жилых помещениях) для расчета потребленной тепловой энергии с использованием пропорциональной схемы на основе данных общедомового счетчика тепловой энергии;
  • обработки, накопления и сохранения в энергонезависимой памяти и выдачи по каналам связи сети Интернет по запросу и в плановом режиме данных об энергопотреблении на районный (городской) сервер учета и диспетчеризации энергопотребления;
  • мониторинга и визуализации данных о потребленных энергоресурсах с использованием WEB-интерфейса в удобном для конечного пользователя виде;
  • предотвращение аварийных ситуаций на основе обнаружения протечек воды и обнаружения фактов ненормативного (нестандартного) расходования энергоресурсов;
  • диспетчеризации потребления горячей и холодной воды при предотвращении аварийных ситуаций и по командам с районного сервера учета и диспетчеризации энергопотребления;
  • диспетчеризации потребления электроэнергии при предотвращении аварийных ситуаций и по командам с районного сервера учета и диспетчеризации энергопотребления;
  • автоматического регулирования температуры в отапливаемых помещениях с использованием суточных и недельных установок желаемой температуры;
  • взаимодействия с типовым датчиками охранно-пожарной сигнализации, реализации режимов дистанционной постановки и снятия квартиры с охраны, «Тревожной кнопки», извещения о возгорании, утечки газа, протечки воды с передачей тревожных событий на общеобъектовый концентратор и выбранным абонентам сетей GSM;
  • защиты системы от несанкционированного доступа и неквалифицированного использования;
  • дистанционной настройки и конфигурирования приборов в составе системы при помощи стандартизованных протоколов;
  • ведения архивов на районном сервере учета и диспетчеризации энергопотребления и выдачи их на удаленные клиентские рабочие места органов государственной власти и управления, энергоснабжающих организаций, управляющих компаний, товариществ собственников жилья и т.д.

Состав и характеристики система учета энергоресурсов :
1. Квартирный блок, конструктивно устанавливаемый, например, в силовом щитке или в любом другом удобном месте, обеспечивающем доступ к сети 220 В и к компьютерной проводной сети Ethernet:

  • интерфейсы связи – TCP/IP Ethernet, RS-485, MiWi, GSM (при наличии роутера);
  • число поддерживаемых беспроводных модулей по интерфейсу MiWi – до 45;
  • дальность радиосвязи - до 30…100 м. (зависит от конкретных условий использования, в частности от типа стен помещений – кирпич, бетон и т.п.);
  • накопление информации (до нескольких часов, в зависимости от числа подключенных модулей учёта) при отсутствии связи с сервером и последующая досылка накопленной информации после восстановления связи;
  • поддержка двух серверов (основного и резервного) с автоматическим переходом с одного на другой при исчезновении связи;
  • резервирование каналов связи с сервером – основной канал: LAN Ethernet (витая пара, коннектор RJ-45), резервный: GPRS GSM (при наличии GSM роутера);
  • сохранение работоспособности функций регулирования температуры и диспетчеризации при отсутствии связи с сервером.

Примечание: квартирный блок используется в индивидуальном варианте использования и в качестве средства накопления и передачи данных модулей учета общедомового расхода энергоресурсов .
2. Модуль учета и диспетчеризации водоснабжения:

  • счетчики холодной и горячей воды с импульсным выходом с установочным диаметром 1/2, 3/4;
  • краны с электроприводом с установочным диаметром 1/2, 3/4;
  • беспроводной цифровой термометр с точностью измерения температуры 0,1°С;
  • преобразователь «счетный выход-радиоинтерфейс» БСИ-01;
  • беспроводный датчик утечки воды БДУВ-01;
  • модуль управления вентилями с радиодоступом МУВ-01.

3. Модуль учета и регулирования теплоснабжения в составе:

  • электрически управляемого (или ручного термостатического) вентиля;
  • радиаторных и комнатных цифровых термометров с радиоинтерфейсом.

4. Модуль учета и диспетчеризации электроснабжения:

  • электросчетчик со счетным выходом;
  • реле-ограничителя потребляемой электрической мощности;
  • блок сопряжения с реле-ограничителем (модуль управления нагрузкой с радиодоступом МУН-01);
  • преобразователь «счетный выход-радиоинтерфейс» БСИ-01.

5. Модуль учета общедомового расхода энергоресурсов:

  • квартирный блок в варианте учета общедомового расхода энергоресурсов;
  • стандартные объектовые (общедомовые) приборы учета энергоресурсов с интерфейсами RS-485, ETHERNET.

6. Ретранслятор радиосети РРС-01 (для больших помещений со сложной планировкой и частной застройки).
7. ИК датчик движения беспроводный ОДП-01.
8. Пожарный датчик беспроводный ПДБ-01.
9. Районный (городской) сервер сбора и обработки данных об энергопотреблении зданий и сооружений с сетевым доступом, статическим сетевым адресом и системой бесперебойного питания
10. Серверное программное обеспечение (ПО):

  • Операционная система - Windows или Linux (Unix);
  • Емкость адресного пространства для подключения квартирных блоков (индивидуальных потребителей) составляет 65535 шт. (до 200…300 многоквартирных жилых домов), реальное количество приборов зависит от производительности компьютера, скорости передачи линий связи, интенсивности обмена данными;
  • Непрерывная архивация данных, получаемых от объектов;
  • Повышенная отказоустойчивость и минимальные требования к аппаратным средствам.

11. Клиентское ПО:

  • Операционная система - Windows или Linux (Unix)
  • Отображение текущих (он-лайн) данных как в текстовом (табличном), так и в графическом виде (в виде графиков).
  • Просмотр архивов за заданный пользователем интервал времени в текстовом и табличном виде.
  • Возможность выборочной блокировки (отключения) потребителей.
  • Удаленная настройка объектового оборудования (клиентское ПО для инженера системы).

Структурная схема интеллектуальной энергосберегающей система учета энергоресурсов приведена на рис. 1.

Рис. 1 – Структурная схема интеллектуальной энергосберегающей система учета энергоресурсов

Порядок работы интеллектуальной энергосберегающей система учета энергоресурсов .
Данные с импульсных выходов счётчиков холодной и горячей воды поступают на вход преобразователя «счетный выход-радиоинтерфейс» БСИ-01, который подсчитывает число импульсов и передает эти данные по беспроводной сети Mi-Wi на квартирный блок, который производит расчёт текущего значения величины расхода холодной и горячей воды с сохранением результата в энергонезависимой памяти. Затем квартирный блок транслирует их посредством Enternet на районный сервер учета и диспетчеризации энергоснабжения. Преобразователь «счетный выход-радиоинтерфейс» БСИ-01 имеет батарейное питание.

Квартирный блок со снятой верхней крышкой и квартирная панель управления (справа)

Одновременно с учетом расхода воды осуществляется непрерывный мониторинг температуры трубопровода горячей воды с использованием устанавливаемого на нем беспроводного датчика температуры. Измерение температуры осуществляется через заданное время (20…30 секунд) после начала текущего цикла расхода и, при выходе температуры за нормативные параметры, осуществляется передача информации об этом факте на квартирный блок с ретрансляцией данных на районный сервер энергопотребления. Это необходимо для реализации законных прав пользователей на снижение расходов при ненормативном энергоснабжении.
При срабатывании беспроводного датчика утечки воды БДУВ-01 осуществляется передача информации об этом на квартирный блок. На основании заданного алгоритма квартирный блок принимает решение о диспетчеризации (перекрытии подачи) холодной и горячей воды, о чем выдается соответствующая индикация на квартирную панель. Команда на перекрытие воды выдается по беспроводной сети на модуль управления вентилями МУВ-01 и ретранслируется им на исполнительное устройство – шаровый кран. После исполнения команды выдается подтверждающая квитанция на квартирный блок. Кроме описанного, может быть использовано принудительное перекрытие холодной и горячей воды с районного сервера учета диспетчеризации энергоресурсов при отсутствии оплаты, необходимости жесткого лимитирования расхода и т.д., а также диспетчеризация воды по командам пользователя.
Порядок учета и диспетчеризации электроэнергии аналогичен порядку учета и диспетчеризации водоснабжения.
Учет и регулирование теплоснабжения осуществляется следующим образом. Данные о температуре радиатора отопления и температуре в отапливаемом помещении с заданной периодичностью (100…300 секунд) передаются на квартирный блок. При использовании ручного термостатического вентиля указанные данные накапливаются в энергонезависимой памяти и после усреднения с циклом 3…5 минут выдаются на районный сервер энергопотребления. При использовании автоматического электронного регулирования температуры с использованием специального программного обеспечения квартирного блока реализуется контур автоматического поддержания заданной температуры на основе модифицированного пропорционального регулирования с выработкой команд управления электрическим вентилем. В качестве исходных данных для регулирования используются суточные и недельные программы (профили) регулирования, устанавливаемые пользователем посредством квартирной панели или WEB-интерфейса по сети. Одновременно с учетом данных о комнатной температуре и температуре радиаторов отопления осуществляется контроль за состоянием элементов питания всех беспроводных устройств, имеющих батарейное питание. Расчет потребленной тепловой энергии каждым индивидуальным потребителем осуществляется с использованием специального программного обеспечения районного сервера энергопотребления на основе пропорционального принципа по данным о зафиксированных температурах, теплоотдаче установленных радиаторов и данных обещедомового расхода.

Радиатор отопления с установленным на нём модулем измерения температур (справа).

На районном сервере учета и диспетчеризации энергопотребления, получаемые через Интернет от квартирных блоков данные, архивируются для последующего использования. Сервер включен круглосуточно, обладает необходимыми средствами резервирования данных и располагается в специально отведённом помещении. К серверу подключаются удаленные клиентские рабочие места со специальным программным обеспечением для работников органов государственной власти, энергоснабжающих организаций, управляющих компаний, товариществ собственников жилья и биллинговых систем расчета. Клиентское программное обеспечение имеет удобный дружественный интерфейс пользователя, позволяющий наблюдать (графика, таблицы), статистически обрабатывать и анализировать информацию об энергопотреблении.
Клиентское программное обеспечение даёт возможность блокировать потребителей. При этом после того как оператор отдал команду блокировки, она с клиентского рабочего места поступает на сервер энергопотребления, затем на квартирный блок. С квартирного блока команда ретранслируется на соответствующий модуль, включающий исполнительный механизм диспетчеризации.

Подключение и настройка интеллектуальной энергосберегающей система учета энергоресурсов .
Питание модуля управления вентилями МУВ-01 осуществляется от источников электропитания (далее источник электропитания) с номинальным напряжением 12 В. Отклонения напряжения должны лежать в пределах от минус 15 % до плюс 10 % номинального значения. Источник электропитания для устройства должен быть рассчитан на максимальный ток до 1 А.

Рис. 2 - Cхема подключения МУН-01

Краны шаровые подключаются к плате МУН-01 к выходам реле.

Подключение импульсного выхода счётчика (воды, эл.энергии и т.п.) к плате БСИ-01 осуществляется к клеммам счетного входа при этом один вывод импульсного выхода счётчика подключается к общему выводу платы («минус» питания), а другой - к клемме входа канала (см. рис. 3).

Рис. 3 - Схема подключения устройства БСИ-01

Платы БСИ-01 и МУН-01 питаются от литиевого батарейного источника питания напряжением +3В, однако возможно и подключение внешнего источника с напряжением +3…5В.

Питание квартирного блока, включающего в себя плату сетевого концентратора (рис. 4.) осуществляется от источников электропитания с номинальным напряжением 12 В. Отклонение напряжения должны лежать в пределах от минус 15 % до плюс 10 % номинального значения. Источник электропитания для устройства должен быть расчитан на максимальный ток до 1 А.

Рис. 4 – Модуль беспроводной сети квартирного блока

Настройка параметров интеллектуальной энергосберегающей система учета энергоресурсов может осуществляться как с сервера, так и через доступ при помощи терминала «Telnet».
Алгоритм ввода в эксплуатацию нового прибора (беспроводного модуля):

  • Оператор отправляет выбранному квартирному блоку команду поиска нового беспроводного устройства. После этого беспроводная сеть переходит в режим ожидания подключения прибора с заводским адресом (по-умолчанию имеющему значение, равное 255).
  • Оператор нажимает и удерживает 3…5 секунд специальную кнопку на добавляемом в сеть устройстве (беспроводном модуле), после чего устройство устанавливает связь с сетевым узлом (квартирным блоком). При этом в случае, если устройство находится в радиусе действия одновременно нескольких беспроводных сетей (соседских квартирных блоков), то оно подключатся только к той сети, которая была до этого переведена в состояние ожидания (см. пункт 1).
  • Подключенное устройство высылает свои заводские настройки (тип модуля, тип датчиков, значения масштабных коэффициентов для пересчёта показаний датчика (счетчика) в значение конкретной физической величины и т.п.) квартирному блоку, который затем передаёт полученные настройки на сервер, а тот в свою очередь – в специальную программу утилиту-клиент для администрирования системы. После этого, для оператора отображается форма (Рис. 2.) конфигурирования прибора с уже заполненными полями, исходя из полученных заводских настроек.
  • Оператор при необходимости корректирует некоторые поля (адрес прибора, его наименование и т.п.) в указанной форме настроек и нажимает кнопку «Применить». Введённые настройки отправляются на сервер, затем – через квартирный блок (ретранслятор локальный) в добавляемое устройство, где сохраняется в энергонезависимой памяти.
  • После проведенных действий устройство оказывается подключенным к беспроводной сети и для подтверждения высылает обратно на Сервер только что полученные новые настройки.

Перед первым подключением ретранслятора локального (РЛ-01) к сети LAN-Ethernet необходимо, чтобы системный администратор, обслуживающий данную сеть, назначил для подключаемого прибора, как для сетевого устройства, IP-адрес и маску подсети (заводские установки см. в табл. 1), а также обеспечил доступ к серверу сбора данных TCP порт 2021.

Таблица 1 – Заводские установки сетевых параметров



п/п

Параметр

Значение

00:04:A3:01:03:(83...88)

Собственный IP-адрес (IP v4)

IP-адрес шлюза

Маска подсети

Предпочтительный DNS-сервер

Альтернативный DNS-сервер

Для получения доступа к WEB-интерфейсу необходимо набрать в аресной строке браузера IP-адрес устройства (по умолчанию 192.168.10.180).
На экране отобразиться страница приветствия WEB-интерфейса. (рис. 5).

Рис. 5 – Стартовая страница WEB-интерфейсаинтеллектуальной энергосберегающей система учета энергоресурсов

Доступ к стартовой странице не требует ввода пароля.
В левой стороне расположено главное меню WEB-интерфейса интеллектуальной энергосберегающей система учета энергоресурсов:

  • Главная
  • Устройства
  • Конфигурация
  • Суточные профили
  • Недельные профили
  • Сеть TCP/IP
  • Сеть GSM
  • Журнал
  • Тех.поддержка

Для входа на каждую из данных страниц (кроме «Тех. поддержка») необходим ввод логина/пароля (по-умолчанию Admin/start) в форму авторизации (рис. 6).

На странице WEB-интерфейса «Устройства» пользователь может просмотреть список всех устройств, подключенных к квартирному блоку, а также значения текущих показаний по выбранному модулю учёта (рис. 7).
Также отображается статус устройства в радиосети (подключено/отключено) и время его последней активности. Это позволяет оперативно и наглядно оценить работу системы (качество связи с устройствами, темп обмена данными и т.п.).
По каждому из приходящих от устройств значений отображается время измерения, что позволяет в любой момент иметь чёткое представление об актуальности данных.
При разработке WEB-интерфейса была использована технология AJAX , Ajax (от англ. Asynchronous Javascript and XML - «асинхронный JavaScript и XML») - подход к построению интерактивных пользовательских интерфейсов веб-приложений, заключающийся в «фоновом» обмене данными браузера с веб-сервером. В результате, при обновлении данных, веб-страница не перезагружается полностью, а веб-приложения становятся более быстрыми и удобными. Это позволяет пользователю наблюдать в реальном времени изменения параметров не нажимая всё время кнопку браузера «Обновить».

Рис. 7 – Страница WEB-интерфейса системы учета энергоресурсов - «Устройства»

На странице WEB-интерфейса системы учета энергоресурсов «Конфигурация» выводится полная информация о составе БСС, параметрах входящих в неё устройств и т.п. (рис. 8).

Рис. 8 - Страница WEB-интерфейса системы учета энергоресурсов - «Конфигурация»

На странице «Суточные профили» системы учета энергоресурсов (рис. 9) пользователь может задавать до 4-х различных (согласно ТЗ) суточных профилей регулирования температуры. В каждом таком профиле присутствуют по 4 временных интервала, на протяжении которых поддерживается определённое значение температуры. Таким образом, можно, например, сформировать для системы учета энергоресурсов профили выходного дня (когда всё время, кроме ночи поддерживается высокая температура) и буднего (рабочего) дня (когда все проживающие находятся вне квартиры - температуру можно снижать) благодаря чему достигается экономия энергоресурсов.

Рис. 9 – Страница WEB-интерфейса системы учета энергоресурсов - «Суточные профили»

Пользователь имеет возможность задавать до двух недельных профилей изменения температуры, каждый из которых определяет - по какому из 4-х суточных профилей осуществлять регулирование температуры в каждый из 7-ми дней недели. Редактировать недельные профили можно на странице WEB-интерфейса «Недельные профили» (рис. 10).
На последующих страницах WEB-интерфейса («Сеть TCP/IP», «Сеть GSM», «Журнал» и «Тех. поддержка») пользователь или администратор системы имеет возможность изменять сетевые настройки и просматривать протокол (журнал) событий.

Рис. 10 – Страница WEB-интерфейса системы учета энергоресурсов - «Недельные профили»

Квартирный блок системы учета энергоресурсов также имеет возможность подключения по Telnet. Это необходимо, прежде всего, инженерным работникам, занимающимся пуско-наладкой и обслуживанием ИЭС. В режиме доступа по Telnet можно получить существенно более подробную информацию о состоянии системы, по сравнению с WEB-интерфейсом. (рис. 11).

Рис. 11 – Просмотр состояния системы учета энергоресурсов при помощи Telnet

Используя доступ через Telnet, можно в реальном времени отслеживать следующие параметры системы учета энергоресурсов:
- список устройств, их тип;
- наличие связи по беспроводной сети для каждого из устройств;
- статус последней отправки данных устройству («готов», «занят», «ошибка» и т.п.);
- входящий и исходящий трафик (объём данных) по каждому из устройств;
- время последнего сеанса радиосвязи с устройством;
- время получения последних данных о измеряемой величине;
- бортовое время квартирного блока;
- количество ошибок передачи / ошибок контрольной суммы (CRC), возникших в процессе передачи данных с момента включения квартирного блока;
- общее число зарегистрированных в беспроводной сети устройств / число устройств, находящихся на связи;
- состояние подключения к серверу;
- состояние очереди на отправку сообщений устройствам;
- напряжение питания квартирного блока;
- время работы квартирного блока от момента включения.

Рис. 12 - Окно настройки устройства системы учета энергоресурсов через Telnet

При использовании Telnet все команды вводятся в текстовом виде, при этом их перечень и требуемый синтаксис (форма записи) приведен в таблице 3.

Таблица 3 - Команды Telnet конфигурирования квартирного блока.

Команда (формат
записи)

Аргументы
(параметры)

Описание
(выполняемые действия)

Отображает текущие сетевые настройки системы учета энергоресурсов.

disconnect server

Разрывает соединение с сервером системы учета энергоресурсов

Номер объекта

Устанавливает номер объекта системы учета энергоресурсов (адрес квартирного блока).

serv=XXXXXXXX...

URL-адрес сервера

Устанавливает URL-адрес сервера системы учета энергоресурсов

Номер TCP-порта для подключения к серверу

Устанавливает номер TCP-порта для подключения к серверу системы учета энергоресурсов.

Собственный
IP-адрес устройства

Устанавливает собственный
IP-адрес устройства

Маска подсети

Устанавливает маску подсети системы учета энергоресурсов

IP-адрес сетевого шлюза

Устанавливает IP-адрес сетевого шлюза системы учета энергоресурсов

addr=X ch=Y val=Z

X-адрес беспроводного модуля,
Y-номер канала,
Z-новое значение

Устанавливает новое значение по заданному каналу выбранного беспроводного модуля. Может, например, использоваться для ручного управления нагрузкой.

X-текущий адрес беспроводного модуля, Y-новый адрес

Изменяет адрес беспроводного модуля системы учета энергоресурсов.

Отображает список всех зарегистрированных беспроводных модулей (их адреса, наименование, тип и т.п.)

X-адрес беспроводного модуля

Отображает текущие значения всех параметров по всем каналам для заданного беспроводного модуля.

add addr=X type=Y

X-адрес добавляемого беспроводного модуля, Y-тип модуля*

Добавляет в систему новое устройство (беспроводной модуль) заданного типа.

X-адрес удоляемого беспроводного модуля,

Удаляет из системы устройство (беспроводной модуль).

X-начальный номер записи протокола, Y-конечный номер.

Отображает заданный диапазон записей сообщений, переданных на сервер.

link addr=X to Y ch=Z

X-адрес датчика температуры,
Y и Z-адрес и номер канала модуля управления нагрузкой, соответственно.

Подключает выбранный беспроводной датчик температуры к требуемому каналу заданного модуля управления нагрузкой, формируя таким образом контур автоматического регулирования температуры.

XXXXX...-текст, отображаемый на панели

Отправляет текстовое сообщение на квартирную панель. (Аналог текстового информационного сообщения с сервера).

Активирует механизм загрузки обновления встроенного ПО.

Выполняет сброс (перезагрузку) устройства

reset to default

Выполняет сброс устройства на заводские устновки.

Завершает работу Telnet-терминала.

Отображает встроенную справку.

*– возможные значения параметра «тип модуля»:
0 – Неизвестное устройство;
1 - Ретранслятор локальный ETERNET/GSM (РЛ-01) ;
2 - Модуль управления нагрузкой ЖКХ с радиодоступом (МУН-01);
3 - Беспроводный распределитель тепла (БРТ-01);
4 - Беспроводный счетчик импульсов (БСИ-01);
5 - Ретранслятор радиосети (РРС-01);
6 - Квартирная панель индикации и управления (КПИУ-01);
7 - Приемо-передающее устройство (ППУ-01);
8 - Охранный ИК датчик движения беспроводный (ОДП-01);
9 - Пожарный датчик беспроводный (ПДБ-01);
10 - Беспроводный датчик утечки воды (БДУВ-01);
11 - Охранный модуль;
12 - Беспроводной датчик температуры (БДТ-01).

Краткое описание клиентского и серверного программного обеспечения системы учета энергоресурсов .

Внешний вид серверного программного обеспечения системы учета энергоресурсов приведен на рис. 13.

Рис. 13 - Серверное программное обеспечение (ПО) системы учета энергоресурсов

Клиентское ПО системы учета энергоресурсов включает 2 клиентских приложения:

    • Клиентское ПО системы учета энергоресурсов для настройки системы и просмотра показаний приборов в режиме On-Line (клиент для инженера и оператора системы);
    • Клиентское ПО системы учета энергоресурсов для учета энергопотребления объектов ЖКХ, предназначенное для определения и визуализации потребления абонентами энергоресурсов за заданный период времени (клиентское ПО для ТСЖ и управляющих компаний).

Внешний вид клиентского ПО системы учета энергоресурсов приведен на рис. 14. На вкладке «Состояние объекта» выводятся данные, получаемые в реальном режиме времени с объектового оборудования. В левой панели выводится список устройств, подключенных к серверу. На вкладке «Состояние объекта» выводятся данные, полученные с прибора, наличие тревоги, а также состояние подключения прибора к серверу и актуальность полученных данных.

Рис. 14 - Клиентское ПО системы учета энергоресурсов, вкладка «Состояние объекта»

На вкладке «On-line просмотр» выводятся данные, получаемые с приборов, в графическом виде (рис. 15).

Рис. 15 - Клиентское ПО системы учета энергоресурсов, вкладка «On-line просмотр»

Клиентское ПО системы учета энергоресурсов для учета энергопотребления объектов ЖКХ:

    • обеспечивает ведение базы данных, содержащей информацию об абонентах (юридических и физических лицах), приборах энергоучета и тарифах оплаты услуг энергопотребления;
    • обеспечивает импорт данных об энергопотреблении с нескольких серверов системы учета энергопотребления;
    • позволяет просматривать детализацию потребления электроэнергии для отдельного абонента (или для группы абонентов / объектов) за заданный временной интервал (рис. 16).
    • позволяет просматривать распределение потребления энергоресурсов между абонентами или объектами ЖКХ за заданный временной интервал (рис. 17).
    • поддерживает формирование квитанций об оплате услуг ЖКХ (рис. 18), определение баланса абонентов, формирование списков должников.
    • поддерживает формирование отчетов о потреблении энергоресурсов абонентами за заданный период времени (рис. 19).

Рис. 16 - Просмотр суммарного потребления холодной воды объектом с детализацией 1 сутки

Рис. 17 - Просмотр распределения потребления электроэнергии между абонентами

Рис. 18 - Пример квитанции об оплате, сформированной клиентским приложением системы учета энергоресурсов

Рис. 19 - Пример отчета о потреблении электроэнергии абонентами системы учета энергоресурсов

Рис. 19 - Интеллектуальная энергосберегающая система учета энергоресурсов на основе технологий беспроводных сенсорных сетей и интеллектуальных датчиков в здании торгового центра.

УДК XXX. XXX. XX

К. т.н., доцент, ВГАВТ1
, ВГАВТ
, к. т.н., ВГАВТ
, д. т.н., профессор, ВГАВТ
, к. т.н., ВГАВТ

Автоматизированная система учета энергоресурсов.

Краткая аннотация

Существующие системы учета потребления энергоресурсов можно разделить на 2 группы – системы коммерческого учета и системы оперативного контроля и учета [например, 1,2]. Для первой группы требуется сертификация средств измерения, в связи с чем они имеют сравнительно высокую стоимость. Системы оперативного контроля и учета предназначены для получения достоверной информации о потреблении энергоресурсов, играющей важную роль при принятии обоснованных управленческих решений руководством предприятий и учреждений.

Подобная система под названием “САКУРА” (рис.1) была разработана для одного из корпусов Горьковского технического университета по заказу Нижегородского регионального центра энергосбережения (информация о системе опубликована НИЦЭ в без ссылок на разработчиков).

Рис.1 Заставка системы САКУРА.

Система предназначена для автоматизированного сбора и учета информации о потреблении энергоресурсов (электрической и тепловой энергии , тока, температуры, воды, газа и т. п.) в промышленных и административных зданиях.

В состав системы входят диспетчерский пульт (компьютер с программным комплексом), контроллер линии связи, устройства сбора и хранения информации (УСХИ), измерительные приборы (или датчики) с интерфейсом RS-485 (рис. 2). К линии RS-485 может быть подключено до 32 устройств (УСХИ и датчиков с интерфейсом RS-485, например счетчиков электрической энергии, тепловой энергии и т. п.). В свою очередь, к УСХИ может быть подключено до 64 датчиков с токовыми и импульсными выходами. Контроллер линии связи позволяет работать со вторым диспетчерским пультом через телефонный канал связи.

Рис.2. Структура системы автоматизированного сбора и учета информации о потреблении энергоресурсов.

Функциональные возможности системы.

Функции оперативного контроля:

Контроль в режиме реального времени любого из датчиков с диспетчерского пульта или с удаленного терминала по телефонной линии;

Представление в графическом виде планов здания с размещенными датчиками и их показаний.

Функции настройки:

Добавление новых датчиков или их исключение из системы;

Привязка датчиков к поэтажным планам здания;

Конфигурация УСХИ и настройка подключенных к нему датчиков.

Функции сбора и хранения информации:

Опрос всех устройств, включенных в сеть и чтение с них статистической информации за заданный промежуток времени;

Просмотр текущих показаний датчиков в режиме мониторинга с представлением их местоположения на поэтажных планах здания;

Сохранение собранной со всех датчиков информации.

Функции анализа:

Представление информации в табличном и графическом виде по любым видам потребляемых энергоресурсов за произвольный интервал времени;

Расчет обобщенных характеристик (суммарных, удельных значений параметров и т. п.).

Функции защиты информации :

Доступ возможен только при использовании пароля (два уровня – диспетчера и администратора).

Описание устройства сбора и хранения информации.

УСХИ служит для подключения датчиков не имеющих интерфейса RS-485. Это датчики с токовым выходом (датчики температуры, датчики тока и т. п.) и датчики с импульсным выходом (Счетчики воды и т. п.). К УСХИ можно подключить до 64 (функционально разбиты на 8 модулей по 8 датчиков, количество модулей импульсных и токовых датчиков – произвольное). Диапазон частот для импульсных входов – 0-200 Гц, входные сигналы токовых датчиков - 0-20 мА или 4-20 мА. Информация с датчиков хранится в блоке УСХИ с интервалом 30 мин в течении 10 последних суток.

Конструкция УСХИ – модульная (рис.3). На материнской плате размещена плата центрального процессора и восемь слотов для подключения модулей ввода информации с датчиков. Материнская плата с помощью ленточного кабеля соединена с платами клеммных соединителей для подключения кабелей датчиков. На них размещены 64 группы (по 3 штуки – корпус, +24В, сигнальный вход) клеммных соединителей.

Модули аналогового и импульсного ввода выполнены в виде отдельных плат, вставляемых в слоты. Каждый модуль имеет 8 каналов измерения. Каждая плата обслуживается собственным процессором. Программа, зашитая во внутреннюю память процессоров, обеспечивает измерение по 8 каналам и формирование массива полученных данных для передачи в центральный процессор. Связь с центральным процессором осуществляется по внутреннему последовательному каналу на скорости ________. Любой модуль (аналогового или импульсного ввода) может размещаться в произвольном слоте. Тип модуля и его адрес модуль центрального процессора определяет автоматически, никаких изменений в аппаратной части и программе УСХИ не требуется. Размер модуля ввода – 85*50 мм.

На плате центрального процессора УСХИ размещены 2 однокристальных микроЭВМ, энергонезависимая память, часы реального времени, сторожевой таймер и интерфейсы внутреннего последовательного канала и внешнего канала RS-485.

Первая ОМЭВМ обеспечивает сбор информации с модулей ввода и формирование массива данных за последние 10 суток с тридцатиминутным интервалом. Вторая ОМЭВМ обеспечивает подключение блока к каналу RS-485.

Рис.3. Устройство сбора и хранения информации

Контроллер линии связи позволяет осуществлять соединение компьютера с каналом связи RS-485 или телефонным модемом. Через канал связи RS-485 осуществляется сбор данных с контролируемых устройств и установленных датчиков. Второй канал предназначен для осуществления связи с удаленными устройствами посредством коммутируемой телефонной связи и модема. Для реализации удаленной сети (в другом здании, районе, городе) используются два контроллера связи, при этом к одному подключаются диспетчерский пульт, телефонный модем и локальные устройства сбора информации, ко второму подключается модем и устройства сбора информации.

Описание диспетчерского пульта.

Диспетчерский пульт (рис. 4) реализован с помощью программного комплекса “САКУРА” устанавливаемого на персональном компьютере. Данный программный комплекс для работы под операционной системой Windows 98 и выше. Компьютер должен иметь свободный COM порт для подключения контроллера линии связи.

Программный комплекс (ПК САКУРА) включает в свой состав систему сбора, хранения и визуализации данных и драйверы сопряжения с подключаемыми внешними устройствами. Одной из основных характеристик комплекса является его модульная структура, позволяющая легко наращивать функциональность установленной системы (подключение датчиков и устройств других фирм-производителей).

Большое внимание при разработке ПК САКУРА уделялось обеспечению гибкости системы и легкости внесения изменений в конфигурацию без необходимости модификации программы.

Рис. 4. Диспетчерский пульт системы.

Режим отображения поэтажного плана

Программа обеспечивает отображение информации об устройствах в 2-х видах – через окно дерева устройств, и через окно поэтажного плана. Дерево устройств отображает все устройства в системе (с учетом выбранной при старте организации); при этом устройства сгруппированы по типам измеряемого ресурса. Поэтажный план отображает устройства по их физическому месту расположения. Работа в режиме отображения поэтажного плана обеспечивает большую наглядность.

Рис. 5. Окно поэтажного плана.

Основным элементом данного окна (рис. 5) являются 3 закладки с планами подвала, первого этажа и второго этажа. Переключение между ними осуществляется щелчком мышью на закладке листа .

Под планом находится информация о комнате, по которой выполнен щелчок мышью: номер (или название), принадлежность организации и количество датчиков. Далее - название и тип находящихся в комнате датчиков. Область справа отведена под значения тока и температуры от датчиков в выбранной комнате (режим фонового мониторинга).

Разные типы датчиков отображены на плане цветными значками разной формы. Легенда (условные обозначения) располагается справа от плана. Основные операции над датчиками доступны через контекстное меню (щелчок правой кнопкой мыши на значке датчика). Указание мышью на значок устройства (без нажатия) отображает имя устройства (во всплывающей подсказке). Двойной щелчок по значку датчика запускает режим мониторинга.

Большая кнопка справа вверху служит для перехода в режим просмотра дерева устройств, кнопки под легендой доступны только в режиме администратора и служат для работы с комнатами (при начальной настройке системы) и включения режима перемещения устройств на карте.

Информация о комнатах (так же как и информация о датчиках) не является жестко "зашитой" в систему; она вводится на этапе конфигурирования системы и хранится в служебной базе данных программы, обеспечивая возможность изменения конфигурации.

Добавление устройств в систему

Добавление и удаление датчиков возможно только в режиме администратора; этот уровень доступа в систему защищен паролем. После ввода пароля в режиме просмотра дерева устройств появляются кнопки "Добавить устройство" и "Удалить устройство"(рис. 6)

Рис. 7. Окно добавления устройства

После заполнения формы нажатием кнопки ОК происходит добавление устройства в систему. В случае, если устройство подключается через блок УСХИ запускается программа настройки описаная далее. В системе предусмотренна возможность привязки и отображения устройств и датчиков на поэтажном плане здания.

Анализ статистики и построение графиков

Имеется возможноть просмотра данных с датчиков за выбранный период в табличной и графической форме. При этом помечаются интересующие датчики (рис. 8).

Рис. 9. Окно выбора периода.

Далее осуществляется выбор типа отображаемой информации. В зависимости от выбранного датчика (датчиков), их типа и запрошенного периода возможны варианты (выдавать показания в натуральном или денежном выражении и т. п.) При отсутствии данных за часть периода, система автоматически считает их с устройств.

Полученные результаты отоброжаются в окне запрошенных данных в табличной форме и на графике (рис.10).

Рис. 10. Окно запрошенных данных.

Анализ статистических данных.

Анализ данных производится с помощюь модуля расчета. Модуль расчета предназначен для расширения возможностей системы по обработке данных путем обеспечения расчета производных значений на основе имеющихся при обеспечении легкости модификации расчетных формул.

Встроенный вычислитель обеспечивает следующие возможности:

· вычисления по многострочным формулам.

· поддержка 4-х арифметических действий и возведения в степень ("^"), поддержка приоритетов вычисления и скобок.

· использование до 50-ти переменных и именованных констант.

· подстановка вместо имени датчика (точнее, первого слова имени) значения соответствующего показателя за выбранный период.

· подстановка вместо переменной "t" длины выбранного периода (в часах).

Формулы доступны для изменения (считываются из файла при старте программы). При работе в режиме администратора возможен режим отладки (рис. 11).

Рис. 12. Анализ: нормативная кривая энергопотребления.

Работа с датчиками имеющими токовый или импульсный выход.

Все датчики, имеющие токовый или импульсный выход, подключаются к УСХИ при этом максимальное количество, подключаемое к одному блоку, шестьдесят четыре. Количество блоков УСХИ для подключения не ограниченно. Настройка и калибровка подключенных датчиков осуществляется программным путем. Устанавливается тип датчика – аналоговый или импульсный. Далее для импульсных датчиков (рис. 13) производится калибровка. Выбирается канал к которому подключен датчик, вводится название датчика и задается цена одного импульса, дополнительный множитель, размерность измерений и если необходимо задаются пределы ограничений.

Рис. 14. Установка и калибровка аналогового датчика.

Преобразование значения осуществляются по уравнению прямой путем ввода значений в двух точках. Дополнительно предоставляется возможность ввода ограничений значений по максимуму и минимуму и по знаку. В режиме настройки предоставляется возможность просмотра значений и констант калибровки для всех подключенных датчиков.

В режиме опроса датчика подключенного к УСХИ осуществляется автоматическая установка связи с блоком и сбор информации со всех подключенных датчиков. Получаемые значения выводятся в информационном окне о комнате на общем плане здания (рис. 15), либо возможен вывод информации для одного датчика в специальном окошке (рис. 16).

Рис. 16. Просмотр значения выбранного датчика.

Работа с приборами, имеющими последовательный порт RS-485

На момент разработки комплекса заказчик определился с двумя устройствами поддерживающими канал RS-485 – электросчетчик “Микрон 3x” (рис. 17), завод Фрунзе (Н. Новгород) и теплосчетчик (рис. 18) фирмы Danfos (Швеция?). Данные устройства собирают и хранят статистические данные за сутки и месяц и имеют свои протоколы для осуществления связи. Для этих приборов были разработаны программы драйвера, которые позволяют оперативно считывать текущею информацию, настройки приборов и снимать статистические данные. При подключении новых приборов на основе предоставляемого протокола создается новый драйвер, который позволит легко интегрировать приборы в комплекс.

Рис. 18. Окно отображения текущей информации на электросчетчике.

Драйвера для приборов реализуют две основных функции. Работа в режиме мониторинга – производится постоянный опрос прибора с целью предоставления текущих даны и настроек прибора. Информация на компьютере отображается в специальных окошках на рисунке 17 представлено окно отображения текущей информации с электросчетчика, на рисунке 18 с теплосчетчика. Вторая функция – сбор статистических данных с приборов. При этом выводится информационное окно показывающее состояние чтения статистических данных.

В настоящее время система находится в опытной эксплуатации в 8 корпусе Нижегородского политехнического университета.

, “Сакура” - система мониторинга энергопотребления бюджетной организации. // Энергоэффективность: опыт, проблемы, решения, Н. Новгород, 2001. Вып.3. С.52­–57.

1 ВГАВТ, Нижний Новгород, ул. Нестерова, 5.
E-mail: *****@

Название на английском языке

Аннотаця на англ языке (до 10 строк)e.

Информация обо всех видах энергии, мощностях, напряжениях и токах в современном многоквартирном доме, полном лазерных панелей и включенных приборов, - возможно ли получать ее оперативно и не беспокоиться о достоверности данных? Система АСКУЭР разработки «Связь инжиниринг М» поможет вам отбросить все сомнения на этот счет.

ЗАО «Связь инжиниринг М», г. Москва

В последнее время в связи с принятием Федерального закона 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» стал актуальным вопрос об организации достоверного и современного учета потребления энергоресурсов в сфере жилищно-коммунального хозяйства. Автоматизированная система учета электроэнергии необходима для обеспечения взаимодействия системы коммунальных платежей и постоянного контроля приборов учета. Нам известно, что в концепцию создания большинства систем АСКУЭ заложены два основных принципа – общепризнанная надежность технологии сбора и передачи данных и открытая архитектура системы, которая позволяет вести ее дальнейшее развитие. Важно, что при использовании АСКУЭ ЖКХ потребители своевременно получают информацию об объемах потребляемых и отпускаемых энергоресурсов. При этом необходимо обеспечить доступный и высоконадежный канал передачи информации, ведь не секрет, что если с домовых счетчиков контроллеры энергосбыта могут легко снять показания, то поквартирный учет – задача непростая.

ЗАО «Связь инжиниринг М» предлагает множество продуктов и решений, которые значительно облегчат учет потребления энергоресурсов и сделают комфортной жизнь каждого потребителя в отдельности. Компания была создана в 1997 г. на базе отделов РТИ им. академика Минца, ведущего разработчика наземных радиолокационных комплексов ПРО, имеет собственное КБ и испытательную базу.

ЗАО «Связь инжиниринг М» с 2005 года занимается разработкой и производством АСКУЭ для базовых станций сотовых операторов, объектов коммунального и муниципального хозяйства, а также промышленных объектов. Разработанные компанией устройства позволяют осуществлять сбор и передачу данных с приборов учета, а с помощью программного обеспечения можно формировать необходимые отчеты для сбытовых компаний. Сегодня ЗАО «Связь инжиниринг М» предлагает комплексные решения по учету энергоресурсов для объектов жилищно-коммунального и муниципального хозяйства на базе разработанных устройств. Это в том числе и решения АСКУЭ многоквартирных домов на базе каналов GSM и Ethernet.

Опыт показывает, что основной проблемой процесса учета энергоресурсов в ЖКХ является его низкая автоматизация. При организации поквартирного учета потребления электроэнергии, как правило, речь идет только об установке приборов учета. Но если в этой ситуации ответственность за достоверность показаний и оплату за потребление несет потребитель, то есть собственник или наниматель квартиры, то при учете потребления горячей и холодной воды и тепла от достоверности и своевременности передачи показаний зависит функционирование и финансовая устойчивость эксплуатирующей организации. На базе устройств сбора и передачи данных (УСПД) собственного производства ЗАО «Связь инжиниринг М» были разработаны и начали активно внедряться системы автоматизированного учета энергоресурсов в ЖКХ – АСКУЭР. АСКУЭР – это комплекс специализированных, метрологически аттестованных технических средств автоматизированного учета электрической энергии, тепловой энергии, расхода горячей и холодной воды на объектах ЖКХ с целью энергосбережения и ведения расчетов между поставщиками и потребителями энергоносителей.

АСКУЭР в первую очередь предназначена для:

Получения достоверной информации о количестве потребленной электрической энергии, тепловой энергии, расходе горячей и холодной воды;

Снижения трудоемкости и стоимости работ по сбору, обработке, передаче и документированию информации;

Обеспечения финансовых расчетов за электрическую энергию, тепловую энергию, расход горячей и холодной воды между поставщиками и потребителями.

Основными целями создания АСКУЭР являются:

Коммерческий учет потребленной электрической энергии, тепловой энергии, расхода горячей и холодной воды;

Автоматизированный сбор результатов измерений;

Хранение данных об измерениях в базе данных;

Передача данных об измерениях в единую базу данных.

Предлагаемая система строится из двух подуровней:

Информационно-измери­тель­ный комплекс (ИИК) состоит из счетчиков электрической энергии и счетчиков тепловой энергии, а также каналообразующей аппаратуры. ИИК предназначен для выполнения измерений электрической и тепловой энергии, расхода горячей и холодной воды с последующей их передачей на верхний уровень системы (ИВК);

Информационно-вычисли­тель­ный комплекс (ИВК) состоит из каналообразующей аппаратуры, сервера сбора и обработки данных и АРМ-ов (автоматизированных рабочих мест операторов). ИВК предназначен для выполнения регламентного опроса приборов учета уровня ИИК, контроля достоверности полученной информации, промежуточного хранения, обработки и просмотра данных. На данном уровне система обеспечивает функцию сопряжения с биллинговыми системами. Требования к сопряжению с биллинговыми системами сбытовых организаций определяются отдельным документом в соответствии с требованиями установленных систем.

Данная система обеспечивает:

Коммерческий учет потребляемой электрической энергии;

Учет потребляемой тепловой энергии;

Учет расхода горячей и холодной воды;

Формирование отчетных документов;

Хранение учетной информации на сервере АСКУЭР.

Система автоматически фиксирует значения показаний счетчиков электрической и тепловой энергии, водосчетчиков с возможностью реализации алгоритмов расчета объемов потребленной электрической энергии, тепловой энергии, расхода горячей и холодной воды с учетом тарифов, осуществляет накопление, хранение и передачу данных по регламенту или по запросу с уровня ИВК.

Это разработка, которая обладает надежной защитой информации от потерь и искажений при аппаратных отказах и попытках несанкционированного доступа на программном и аппаратном уровнях, а также возможностью дальнейшего наращивания и модернизации аппаратных и программных средств.

Система АСКУЭР разработки «Связь инжиниринг М» работает с большинством серийно выпускаемых счетчиков электроэнергии с цифровым выходом. Для организации учета расхода горячей и холодной воды и тепловой энергии могут применяться серийно выпускаемые теплосчетчики с цифровым выходом, датчики расхода, датчики давления и температуры.

В качестве каналов связи ИИК с ИВК используется пакетный режим передачи данных GSM/GPRS. Для получения результатов измерений с ИИК по запросу из ИВК – канал DATA (GSM/CSD).

Основной компонент системы – устройство мониторинга УМ‑31, разработано и производится ЗАО «Связь инжиниринг М». Прибор имеет сертификат Федерального агентства по техническому регулированию и метрологии об утверждении типа средств связи, обеспечивает сбор и передачу показаний на сервер сбора данных со счетчиков энергоресурсов с цифровым выходом по интерфейсам CAN, RS-232 или RS-485.

К устройству можно подключить до 300 точек учета различных типов, показания с которых будут распознаваться и формировать базу данных определенного формата на основе заданного алгоритма. Собственное программное обеспечение позволяет вести учет в автоматическом режиме по заданному протоколу периода опроса либо по запросу оператора. Формируются почасовой, суточный, месячный, годовой графики потребления энергоресурсов. Информация представлена в удобном интерфейсе в графическом или табличном виде.

Пилотный объект АСКУЭР был установлен в Москве, в районе Северное Бутово, успешно эксплуатируется и имеет положительные отзывы со стороны энергосбытовых организаций.

Коммерческий учет электроэнергии осуществляется для обеспечения финансовых расчетов между предприятиями, генерирующими и распределяющими электроэнергию, и потребителями. Также применяется и технический учет энергии, который призван обеспечить предоставление информации о расходовании электричества на предприятии с разбивкой по отдельным подразделениям, технологическим цепочкам и единицам оборудования, относительно к единице производимой продукции и т.д.

Как правило, на современных предприятиях, особенно на энергоемких производствах, коммерческий и технический учет электроэнергии применяется в комплексе. Это дает возможность обеспечить прозрачность расчетов и открывает широкие возможности для энергосбережения. Для обеспечения коммерческого учета электроэнергии, а также и других энергоресурсов широкое применение получили автоматизированные системы АСКУЭ и АИИС КУЭ.

Коммерческий учет энергии при помощи автоматизированных систем

Коммерческий учет электроэнергии с использованием АСКУЭ и АИИС КУЭ применяется на предприятиях, осуществляющих генерацию и распределение электроэнергии для обеспечения автоматизированного дистанционного контроля производимой, транспортируемой и отпущенной энергии с максимальной точностью измерения. В то же время совершенствование технологий, появление новых приборов учета и новых интерфейсов обмена данными позволило значительно упростить такие системы, снизить их стоимость и сделать доступными для потребителей любого уровня. Благодаря этому сегодня системы АСКУЭ и АИИС КУЭ все более широко внедряются и эффективно используются как в промышленности, так и в коммунальной сфере.

Внедрение систем АСКУЭ и АИИС КУЭ сегодня фактически является необходимостью для многих промышленных предприятий с разветвленной структурой или энергоемким производством. Автоматизированный электронный учет обеспечивает максимальный уровень точности измерений и позволяет получать большой объем дополнительной информации, необходимой для оптимизации энергопотребления. Внедрение таких систем сводит практически к нулю трудозатраты на ведение учета даже при большом количестве приборов первичного учета и сложной структуре предприятия.

Автоматизированная система коммерческого учета электроэнергии выполняет следующие функции и имеет следующие возможности:

  • автоматический сбор данных с первичных измерителей и их периодическая передача на сервер;
  • долгосрочное хранение данных;
  • выполнение аналитических функций (анализ данных с целью оптимизации потребления или передачи электрической энергии);
  • выявление несанкционированного потребления электроэнергии;
  • удаленное подключение и отключение от сети конечных потребителей и т.д.

В отличии от АСКУЭ, система АИИС КУЭ представляет собой автоматизированное средство измерения, позволяющее осуществлять выход на оптовый рынок электроэнергии. Такие системы должны соответствовать требованиям ГОСТ Р 8.596-2002. Поэтому для их внедрения обязательным требованием является регистрация системы в качестве средства измерения в Госреестре, а также проведение ее аттестации контролирующим органом.

Примеры проектов по коммерческому учету электроэнергии

Компания «ЭНЕРГОАУДИТКОНТРОЛЬ» обеспечивает внедрение высокоэффективных систем автоматизированного коммерческого учета электроэнергии любого уровня сложности. Мы выполняем полный комплекс работ, начиная с проектирования системы, заканчивая ее вводом в эксплуатацию, а также осуществляем последующее обслуживание на самых выгодных условиях.

За время работы с 2003 года нами было реализовано большое количество проектов. Наши системы АСКУЭ и АИИС КУЭ используются крупнейшими отечественными корпорациями. В том числе нами были разработаны и внедрены следующие системы:

  • АСКУЭ ООО «Газпром» . Система обслуживает 127 компрессорных станций с использованием 6500 интеллектуальных приборов учета.